分数 Sobolev 空间中时间分数扩散方程的逆初值问题

Pub Date : 2024-09-09 DOI:10.1002/mana.202300292
Nguyen Huy Tuan, Bao-Ngoc Tran
{"title":"分数 Sobolev 空间中时间分数扩散方程的逆初值问题","authors":"Nguyen Huy Tuan,&nbsp;Bao-Ngoc Tran","doi":"10.1002/mana.202300292","DOIUrl":null,"url":null,"abstract":"<p>We study the time fractional diffusion equation <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>∂</mi>\n <mi>t</mi>\n </msub>\n <mi>u</mi>\n <mo>=</mo>\n <msubsup>\n <mi>∂</mi>\n <mi>t</mi>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msubsup>\n <mi>A</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial _t u = \\partial _t^{1-\\alpha } \\mathcal {A} u + G(u)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0&amp;lt;\\alpha &amp;lt;1$</annotation>\n </semantics></math>, in a bounded domain <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>N</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^N$</annotation>\n </semantics></math> with an elliptic operator <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> and a locally Lipschitz nonlinearity <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> on fractional Sobolev spaces, subjected to the homogeneous Dirichlet boundary condition. Data have not been measured at the initial time <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t=0$</annotation>\n </semantics></math>, but at a final time <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$T&amp;gt;0$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$u(T)$</annotation>\n </semantics></math> is given instead of <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$u(0)$</annotation>\n </semantics></math>. The problem is, therefore, called an inverse initial-value problem. We first establish the well-posedness of this problem on fractional Sobolev spaces and the regularity of the solution by assuming only the local Lipschitz continuity of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Second, an susceptible-infected (shortly, SI) model with heterogeneity and a Navier–Stokes equation have been exemplified. Finally, a spatial <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math>-estimate for the solution and its gradient has been provided. The essential tools are asymptotic behaviours of Mittag–Leffler functions, fractional power spaces, fractional Sobolev spaces and embedding, weighted functional spaces, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>r</mi>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>L</mi>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$L^r-L^s$</annotation>\n </semantics></math> estimates for heat semigroup.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse initial-value problems for time fractional diffusion equations in fractional Sobolev spaces\",\"authors\":\"Nguyen Huy Tuan,&nbsp;Bao-Ngoc Tran\",\"doi\":\"10.1002/mana.202300292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the time fractional diffusion equation <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </msub>\\n <mi>u</mi>\\n <mo>=</mo>\\n <msubsup>\\n <mi>∂</mi>\\n <mi>t</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>α</mi>\\n </mrow>\\n </msubsup>\\n <mi>A</mi>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\partial _t u = \\\\partial _t^{1-\\\\alpha } \\\\mathcal {A} u + G(u)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0&amp;lt;\\\\alpha &amp;lt;1$</annotation>\\n </semantics></math>, in a bounded domain <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>N</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Omega \\\\subset \\\\mathbb {R}^N$</annotation>\\n </semantics></math> with an elliptic operator <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> and a locally Lipschitz nonlinearity <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> on fractional Sobolev spaces, subjected to the homogeneous Dirichlet boundary condition. Data have not been measured at the initial time <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t=0$</annotation>\\n </semantics></math>, but at a final time <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$T&amp;gt;0$</annotation>\\n </semantics></math>, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$u(T)$</annotation>\\n </semantics></math> is given instead of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$u(0)$</annotation>\\n </semantics></math>. The problem is, therefore, called an inverse initial-value problem. We first establish the well-posedness of this problem on fractional Sobolev spaces and the regularity of the solution by assuming only the local Lipschitz continuity of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. Second, an susceptible-infected (shortly, SI) model with heterogeneity and a Navier–Stokes equation have been exemplified. Finally, a spatial <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$L^\\\\infty$</annotation>\\n </semantics></math>-estimate for the solution and its gradient has been provided. The essential tools are asymptotic behaviours of Mittag–Leffler functions, fractional power spaces, fractional Sobolev spaces and embedding, weighted functional spaces, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>r</mi>\\n </msup>\\n <mo>−</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>s</mi>\\n </msup>\\n </mrow>\\n <annotation>$L^r-L^s$</annotation>\\n </semantics></math> estimates for heat semigroup.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是有界域中的时间分数扩散方程 , , , 具有椭圆算子和分数 Sobolev 空间上的局部 Lipschitz 非线性,受均质 Dirichlet 边界条件的限制。数据不是在初始时间测量的,而是在最终时间测量的,也就是说,给出的是 ,而不是 。 因此,这个问题被称为逆初值问题。首先,我们建立了该问题在分数 Sobolev 空间上的良好求解性,并通过仅假设局部 Lipschitz 连续性来确定解的正则性。 其次,我们举例说明了具有异质性的易受感染(简称 SI)模型和纳维-斯托克斯方程。最后,提供了解及其梯度的空间估计值。基本工具包括 Mittag-Leffler 函数的渐近行为、分数幂空间、分数 Sobolev 空间和嵌入、加权函数空间以及热半群的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inverse initial-value problems for time fractional diffusion equations in fractional Sobolev spaces

We study the time fractional diffusion equation  t u = t 1 α A u + G ( u ) $\partial _t u = \partial _t^{1-\alpha } \mathcal {A} u + G(u)$ , 0 < α < 1 $0&lt;\alpha &lt;1$ , in a bounded domain Ω R N $\Omega \subset \mathbb {R}^N$ with an elliptic operator A $\mathcal {A}$ and a locally Lipschitz nonlinearity G $G$ on fractional Sobolev spaces, subjected to the homogeneous Dirichlet boundary condition. Data have not been measured at the initial time t = 0 $t=0$ , but at a final time T > 0 $T&gt;0$ , that is, u ( T ) $u(T)$ is given instead of u ( 0 ) $u(0)$ . The problem is, therefore, called an inverse initial-value problem. We first establish the well-posedness of this problem on fractional Sobolev spaces and the regularity of the solution by assuming only the local Lipschitz continuity of G $G$ . Second, an susceptible-infected (shortly, SI) model with heterogeneity and a Navier–Stokes equation have been exemplified. Finally, a spatial L $L^\infty$ -estimate for the solution and its gradient has been provided. The essential tools are asymptotic behaviours of Mittag–Leffler functions, fractional power spaces, fractional Sobolev spaces and embedding, weighted functional spaces, and L r L s $L^r-L^s$ estimates for heat semigroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信