Manal Karim, Hafsa Mallah, Mohammed Tanasehte, Rachida Moultif, Ahmed Hader, Salma Moushi, Iliass Tarras, Yassine Ezaier, Rachid E. T. Touizi, Siham Boufass, Abdelhadi El Bachiri
{"title":"CF 结构电池中 Li+ 互嵌和脱嵌的机械应变和电化学循环诱发的疲劳和失效机理","authors":"Manal Karim, Hafsa Mallah, Mohammed Tanasehte, Rachida Moultif, Ahmed Hader, Salma Moushi, Iliass Tarras, Yassine Ezaier, Rachid E. T. Touizi, Siham Boufass, Abdelhadi El Bachiri","doi":"10.1007/s11664-024-11389-y","DOIUrl":null,"url":null,"abstract":"<p>Structural batteries offer multiple advantages, providing viable solutions for electric mobility. By playing a dual role as both an energy storage device and structural component, they can achieve a larger transportation range and greater safety. However, they are exposed to external mechanical loads that can exacerbate the mechanical stresses induced by the electrochemical cycling. It should be noted that batteries undergo stress due to the intercalation and deintercalation of Li<sup>+</sup>. In fact, when lithium ions are inserted into the active materials, mechanical tension occurs, which can cause cracks and pulverization of the particles. Consequently, the individual particles lose their electrical connectivity. Another aging process is caused by the expansion of the active materials due to mechanical strain during the insertion of lithium ions, resulting in changes in particle volume. In addition to this electrochemical stress, there is added mechanical stress due to their role as a structural component. This paper explores the superposition of these two phenomena and tries to understand the fatigue and failure mechanisms induced by mechanical strain and electrochemical cycling (Li<sup>+</sup> intercalation/deintercalation) in structural batteries. To achieve this, we plan to use the fiber bundle model as a theoretical approach to study the damage and fracture of fiber-reinforced composite materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"59 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue and Failure Mechanism Induced by Mechanical Strain and Electrochemical Cycling of Li+ Intercalation and Deintercalation in CF Structural Batteries\",\"authors\":\"Manal Karim, Hafsa Mallah, Mohammed Tanasehte, Rachida Moultif, Ahmed Hader, Salma Moushi, Iliass Tarras, Yassine Ezaier, Rachid E. T. Touizi, Siham Boufass, Abdelhadi El Bachiri\",\"doi\":\"10.1007/s11664-024-11389-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural batteries offer multiple advantages, providing viable solutions for electric mobility. By playing a dual role as both an energy storage device and structural component, they can achieve a larger transportation range and greater safety. However, they are exposed to external mechanical loads that can exacerbate the mechanical stresses induced by the electrochemical cycling. It should be noted that batteries undergo stress due to the intercalation and deintercalation of Li<sup>+</sup>. In fact, when lithium ions are inserted into the active materials, mechanical tension occurs, which can cause cracks and pulverization of the particles. Consequently, the individual particles lose their electrical connectivity. Another aging process is caused by the expansion of the active materials due to mechanical strain during the insertion of lithium ions, resulting in changes in particle volume. In addition to this electrochemical stress, there is added mechanical stress due to their role as a structural component. This paper explores the superposition of these two phenomena and tries to understand the fatigue and failure mechanisms induced by mechanical strain and electrochemical cycling (Li<sup>+</sup> intercalation/deintercalation) in structural batteries. To achieve this, we plan to use the fiber bundle model as a theoretical approach to study the damage and fracture of fiber-reinforced composite materials.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11389-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11389-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fatigue and Failure Mechanism Induced by Mechanical Strain and Electrochemical Cycling of Li+ Intercalation and Deintercalation in CF Structural Batteries
Structural batteries offer multiple advantages, providing viable solutions for electric mobility. By playing a dual role as both an energy storage device and structural component, they can achieve a larger transportation range and greater safety. However, they are exposed to external mechanical loads that can exacerbate the mechanical stresses induced by the electrochemical cycling. It should be noted that batteries undergo stress due to the intercalation and deintercalation of Li+. In fact, when lithium ions are inserted into the active materials, mechanical tension occurs, which can cause cracks and pulverization of the particles. Consequently, the individual particles lose their electrical connectivity. Another aging process is caused by the expansion of the active materials due to mechanical strain during the insertion of lithium ions, resulting in changes in particle volume. In addition to this electrochemical stress, there is added mechanical stress due to their role as a structural component. This paper explores the superposition of these two phenomena and tries to understand the fatigue and failure mechanisms induced by mechanical strain and electrochemical cycling (Li+ intercalation/deintercalation) in structural batteries. To achieve this, we plan to use the fiber bundle model as a theoretical approach to study the damage and fracture of fiber-reinforced composite materials.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.