Shinichi Endo, Yuki Ishikawa, Hina Shirakashi, Takeyasu Saito
{"title":"真空紫外线照射产生的羟基浓度对环氧树脂和铜之间粘合力的影响","authors":"Shinichi Endo, Yuki Ishikawa, Hina Shirakashi, Takeyasu Saito","doi":"10.1007/s11664-024-11379-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, pretreatment with vacuum ultraviolet (VUV) light changed the adhesion strength between an epoxy resin and directly sputtered copper in a printed circuit board manufacturing process. The adhesion strength was 0.9 N/cm without irradiation but had a peak value of 2.1 N/cm at 540 mJ/cm<sup>2</sup> of VUV irradiation; with increasing VUV irradiation, the adhesion strength decreased. Based on x-ray photoelectron spectroscopy (XPS) analysis of the copper interface of copper peeled from the resin, we evaluated the abundance ratio of metallic and organic oxygen at interfaces exposed to different VUV irradiation doses. We found that the change in the abundance ratio of metallic and organic oxygen was similar to the change in adhesion strength between copper and epoxy resin after exposure to different VUV irradiation doses. We observed the interface between copper and resin via scanning transmission electron microscopy (STEM) and found a distributed layer of oxygen. The functional group concentration in STEM images suggested the presence of a material with an intermediate density. We used chemically modified XPS to evaluate changes in the functional group concentration on epoxy resin surfaces irradiated with VUV light. We found that the hydroxyl group (OH) formed by VUV irradiation and the copper formed by direct sputtering improved adhesion strength in a synergistic manner. We observed a correlation between OH concentration on the resin surface and adhesion strength. These results will help to optimize the VUV irradiation process for adhesion between epoxy resin and sputtered copper.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Hydroxyl Group Concentration Generated by Vacuum Ultraviolet Light on the Adhesion Between Epoxy Resin and Copper\",\"authors\":\"Shinichi Endo, Yuki Ishikawa, Hina Shirakashi, Takeyasu Saito\",\"doi\":\"10.1007/s11664-024-11379-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, pretreatment with vacuum ultraviolet (VUV) light changed the adhesion strength between an epoxy resin and directly sputtered copper in a printed circuit board manufacturing process. The adhesion strength was 0.9 N/cm without irradiation but had a peak value of 2.1 N/cm at 540 mJ/cm<sup>2</sup> of VUV irradiation; with increasing VUV irradiation, the adhesion strength decreased. Based on x-ray photoelectron spectroscopy (XPS) analysis of the copper interface of copper peeled from the resin, we evaluated the abundance ratio of metallic and organic oxygen at interfaces exposed to different VUV irradiation doses. We found that the change in the abundance ratio of metallic and organic oxygen was similar to the change in adhesion strength between copper and epoxy resin after exposure to different VUV irradiation doses. We observed the interface between copper and resin via scanning transmission electron microscopy (STEM) and found a distributed layer of oxygen. The functional group concentration in STEM images suggested the presence of a material with an intermediate density. We used chemically modified XPS to evaluate changes in the functional group concentration on epoxy resin surfaces irradiated with VUV light. We found that the hydroxyl group (OH) formed by VUV irradiation and the copper formed by direct sputtering improved adhesion strength in a synergistic manner. We observed a correlation between OH concentration on the resin surface and adhesion strength. These results will help to optimize the VUV irradiation process for adhesion between epoxy resin and sputtered copper.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11379-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11379-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Hydroxyl Group Concentration Generated by Vacuum Ultraviolet Light on the Adhesion Between Epoxy Resin and Copper
In this work, pretreatment with vacuum ultraviolet (VUV) light changed the adhesion strength between an epoxy resin and directly sputtered copper in a printed circuit board manufacturing process. The adhesion strength was 0.9 N/cm without irradiation but had a peak value of 2.1 N/cm at 540 mJ/cm2 of VUV irradiation; with increasing VUV irradiation, the adhesion strength decreased. Based on x-ray photoelectron spectroscopy (XPS) analysis of the copper interface of copper peeled from the resin, we evaluated the abundance ratio of metallic and organic oxygen at interfaces exposed to different VUV irradiation doses. We found that the change in the abundance ratio of metallic and organic oxygen was similar to the change in adhesion strength between copper and epoxy resin after exposure to different VUV irradiation doses. We observed the interface between copper and resin via scanning transmission electron microscopy (STEM) and found a distributed layer of oxygen. The functional group concentration in STEM images suggested the presence of a material with an intermediate density. We used chemically modified XPS to evaluate changes in the functional group concentration on epoxy resin surfaces irradiated with VUV light. We found that the hydroxyl group (OH) formed by VUV irradiation and the copper formed by direct sputtering improved adhesion strength in a synergistic manner. We observed a correlation between OH concentration on the resin surface and adhesion strength. These results will help to optimize the VUV irradiation process for adhesion between epoxy resin and sputtered copper.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.