{"title":"退火处理对低温锡-57铋-1Ag 焊料互连器件抗电迁移性能的影响","authors":"J. L. Chen, S. B. Wang, J. Ren, M. L. Huang","doi":"10.1007/s11664-024-11402-4","DOIUrl":null,"url":null,"abstract":"<p>The effect of annealing treatment on the electromigration (EM) resistance of low-temperature Cu/Sn-57Bi-1Ag (600 <i>μ</i>m)/Cu solder interconnects has been investigated. The annealing treatment of as-soldered Cu/Sn-57Bi-1Ag/Cu solder interconnects caused the obvious coarsening of Bi phases in the bulk solders and a slight reduction in the electric resistance of the solder interconnects. The coarsening of the Bi phases induced a decrease in the Bi/β-Sn phase boundaries and thus a decrease in the EM-induced atomic diffusion flux of Bi atoms during the subsequent current stressing, resulting in the segregation of a thinner Bi phase layer at the anode and a lower increase rate of electric resistance of the solder interconnects. The longer the annealing time, the higher the EM resistance of the solder interconnects. The reductions in both the effective diffusion coefficient of the Bi atoms and the electric resistivity of the bulk Sn-57Bi-1Ag solders induced by the annealing treatment were responsible for the higher EM resistance of low-temperature Sn-57Bi-1Ag solder interconnects.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"27 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Annealing Treatment on Electromigration Resistance of Low-Temperature Sn-57Bi-1Ag Solder Interconnect\",\"authors\":\"J. L. Chen, S. B. Wang, J. Ren, M. L. Huang\",\"doi\":\"10.1007/s11664-024-11402-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of annealing treatment on the electromigration (EM) resistance of low-temperature Cu/Sn-57Bi-1Ag (600 <i>μ</i>m)/Cu solder interconnects has been investigated. The annealing treatment of as-soldered Cu/Sn-57Bi-1Ag/Cu solder interconnects caused the obvious coarsening of Bi phases in the bulk solders and a slight reduction in the electric resistance of the solder interconnects. The coarsening of the Bi phases induced a decrease in the Bi/β-Sn phase boundaries and thus a decrease in the EM-induced atomic diffusion flux of Bi atoms during the subsequent current stressing, resulting in the segregation of a thinner Bi phase layer at the anode and a lower increase rate of electric resistance of the solder interconnects. The longer the annealing time, the higher the EM resistance of the solder interconnects. The reductions in both the effective diffusion coefficient of the Bi atoms and the electric resistivity of the bulk Sn-57Bi-1Ag solders induced by the annealing treatment were responsible for the higher EM resistance of low-temperature Sn-57Bi-1Ag solder interconnects.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11402-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11402-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
研究了退火处理对低温 Cu/Sn-57Bi-1Ag (600 μm)/Cu 焊料互连器件的电迁移(EM)电阻的影响。对焊接后的 Cu/Sn-57Bi-1Ag/Cu 焊料互连器件进行退火处理后,散装焊料中的 Bi 相明显粗化,焊料互连器件的电阻略有降低。Bi 相的粗化导致 Bi/β-Sn 相界减小,因此在随后的电流应力过程中,电磁诱导的 Bi 原子扩散通量也随之减小,从而在阳极形成较薄的 Bi 相分离层,降低了焊料互连器件的电阻增加率。退火时间越长,焊料互连的电磁电阻越高。退火处理导致 Bi 原子的有效扩散系数和锡-57Bi-1Ag 焊料的电阻率降低,是低温锡-57Bi-1Ag 焊料互连器件的电磁电阻较高的原因。
Effect of Annealing Treatment on Electromigration Resistance of Low-Temperature Sn-57Bi-1Ag Solder Interconnect
The effect of annealing treatment on the electromigration (EM) resistance of low-temperature Cu/Sn-57Bi-1Ag (600 μm)/Cu solder interconnects has been investigated. The annealing treatment of as-soldered Cu/Sn-57Bi-1Ag/Cu solder interconnects caused the obvious coarsening of Bi phases in the bulk solders and a slight reduction in the electric resistance of the solder interconnects. The coarsening of the Bi phases induced a decrease in the Bi/β-Sn phase boundaries and thus a decrease in the EM-induced atomic diffusion flux of Bi atoms during the subsequent current stressing, resulting in the segregation of a thinner Bi phase layer at the anode and a lower increase rate of electric resistance of the solder interconnects. The longer the annealing time, the higher the EM resistance of the solder interconnects. The reductions in both the effective diffusion coefficient of the Bi atoms and the electric resistivity of the bulk Sn-57Bi-1Ag solders induced by the annealing treatment were responsible for the higher EM resistance of low-temperature Sn-57Bi-1Ag solder interconnects.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.