增强氧化镍纳米粒子嵌入柔性 PVDF 薄膜的压电性能

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Arun Mondal, Mohd Faraz, Neeraj Khare
{"title":"增强氧化镍纳米粒子嵌入柔性 PVDF 薄膜的压电性能","authors":"Arun Mondal, Mohd Faraz, Neeraj Khare","doi":"10.1007/s11664-024-11363-8","DOIUrl":null,"url":null,"abstract":"<p>The conversion of ambient mechanical vibrations into electricity using piezoelectric nanogenerators (PENGs) has garnered significant attention from researchers over the past few years, in light of its potential in wearable applications. The high flexibility and significant ferroelectricity of poly(vinylidene fluoride) (PVDF) make them the most promising candidates for PENG applications among polymer piezoelectric materials. In the present work, NiO nanoparticles were incorporated in different ratios into a PVDF matrix, and their potential for use in piezoelectric nanogenerators was investigated. The PVDF/NiO (5 wt.%) nanocomposite PENG exhibited the highest electrical output, with a 2.8-fold increase in open-circuit voltage and short-circuit current observed as compared to a bare PVDF-based PENG. However, a further increase in the compositional ratio of NiO led to a decrease in PENG output. The improved piezoelectricity in the PVDF/NiO (5 wt.%) nanocomposite is attributed to the enhanced polar phases and improved ferroelectricity of PVDF. Further confirmation of the improved piezoresponse was explored by measurement of the piezoelectric coefficient (<i>d</i><sub>33</sub>) and dielectric study of the nanocomposites. The PENG electrical output was further simulated using the finite elemental method in COMSOL Multiphysics 5.5. The simulated results matched well with the experimental output, which confirmed the improved electrical performance of the PVDF/NiO nanocomposite-based PENGs. The enhanced performance of the nanocomposite PVDF film is attributed to the higher β phase in the PVDF. The efficiency of the PENG devices in motion-sensing applications was also explored. Different output voltage signals corresponding to different movements of the nanocomposite-based PENGs make the device compatible with sensor applications.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Piezoelectric Performance in Nickel Oxide Nanoparticle-Embedded Flexible PVDF Film\",\"authors\":\"Arun Mondal, Mohd Faraz, Neeraj Khare\",\"doi\":\"10.1007/s11664-024-11363-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The conversion of ambient mechanical vibrations into electricity using piezoelectric nanogenerators (PENGs) has garnered significant attention from researchers over the past few years, in light of its potential in wearable applications. The high flexibility and significant ferroelectricity of poly(vinylidene fluoride) (PVDF) make them the most promising candidates for PENG applications among polymer piezoelectric materials. In the present work, NiO nanoparticles were incorporated in different ratios into a PVDF matrix, and their potential for use in piezoelectric nanogenerators was investigated. The PVDF/NiO (5 wt.%) nanocomposite PENG exhibited the highest electrical output, with a 2.8-fold increase in open-circuit voltage and short-circuit current observed as compared to a bare PVDF-based PENG. However, a further increase in the compositional ratio of NiO led to a decrease in PENG output. The improved piezoelectricity in the PVDF/NiO (5 wt.%) nanocomposite is attributed to the enhanced polar phases and improved ferroelectricity of PVDF. Further confirmation of the improved piezoresponse was explored by measurement of the piezoelectric coefficient (<i>d</i><sub>33</sub>) and dielectric study of the nanocomposites. The PENG electrical output was further simulated using the finite elemental method in COMSOL Multiphysics 5.5. The simulated results matched well with the experimental output, which confirmed the improved electrical performance of the PVDF/NiO nanocomposite-based PENGs. The enhanced performance of the nanocomposite PVDF film is attributed to the higher β phase in the PVDF. The efficiency of the PENG devices in motion-sensing applications was also explored. Different output voltage signals corresponding to different movements of the nanocomposite-based PENGs make the device compatible with sensor applications.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11363-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11363-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,利用压电纳米发电机(PENGs)将环境机械振动转化为电能的技术因其在可穿戴应用中的潜力而备受研究人员的关注。聚偏二氟乙烯(PVDF)具有高柔韧性和显著的铁电性,是聚合物压电材料中最有希望应用于压电纳米发电机的材料。本研究将不同比例的氧化镍纳米颗粒加入到 PVDF 基体中,并研究了它们在压电纳米发电机中的应用潜力。与裸 PVDF 基 PENG 相比,PVDF/NiO(5 wt.%)纳米复合材料 PENG 的电输出最高,开路电压和短路电流增加了 2.8 倍。然而,NiO 成分比的进一步增加会导致 PENG 输出下降。PVDF/NiO (5 wt.%)纳米复合材料压电性的改善归因于极性相的增强和 PVDF 铁电性的改善。通过测量压电系数(d33)和对纳米复合材料进行介电研究,进一步证实了压电响应的改善。使用 COMSOL Multiphysics 5.5 中的有限元法进一步模拟了 PENG 的电气输出。模拟结果与实验结果十分吻合,证实了基于 PVDF/NiO 纳米复合材料的 PENG 的电性能得到了改善。纳米复合 PVDF 薄膜性能的提高归功于 PVDF 中较高的β相。此外,还探讨了 PENG 器件在运动感应应用中的效率。与基于纳米复合材料的 PENG 的不同运动相对应的不同输出电压信号使该器件与传感器应用兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Piezoelectric Performance in Nickel Oxide Nanoparticle-Embedded Flexible PVDF Film

Enhanced Piezoelectric Performance in Nickel Oxide Nanoparticle-Embedded Flexible PVDF Film

The conversion of ambient mechanical vibrations into electricity using piezoelectric nanogenerators (PENGs) has garnered significant attention from researchers over the past few years, in light of its potential in wearable applications. The high flexibility and significant ferroelectricity of poly(vinylidene fluoride) (PVDF) make them the most promising candidates for PENG applications among polymer piezoelectric materials. In the present work, NiO nanoparticles were incorporated in different ratios into a PVDF matrix, and their potential for use in piezoelectric nanogenerators was investigated. The PVDF/NiO (5 wt.%) nanocomposite PENG exhibited the highest electrical output, with a 2.8-fold increase in open-circuit voltage and short-circuit current observed as compared to a bare PVDF-based PENG. However, a further increase in the compositional ratio of NiO led to a decrease in PENG output. The improved piezoelectricity in the PVDF/NiO (5 wt.%) nanocomposite is attributed to the enhanced polar phases and improved ferroelectricity of PVDF. Further confirmation of the improved piezoresponse was explored by measurement of the piezoelectric coefficient (d33) and dielectric study of the nanocomposites. The PENG electrical output was further simulated using the finite elemental method in COMSOL Multiphysics 5.5. The simulated results matched well with the experimental output, which confirmed the improved electrical performance of the PVDF/NiO nanocomposite-based PENGs. The enhanced performance of the nanocomposite PVDF film is attributed to the higher β phase in the PVDF. The efficiency of the PENG devices in motion-sensing applications was also explored. Different output voltage signals corresponding to different movements of the nanocomposite-based PENGs make the device compatible with sensor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信