下一代电力电子变流器两相冷却技术的进步

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nicolas E. Lima Baschera;Alessandro Lidozzi;Giuseppe Zummo;Luca Saraceno;Fabio Riccardi;Fernando Ortenzi;Marco di Benedetto;Luca Solero
{"title":"下一代电力电子变流器两相冷却技术的进步","authors":"Nicolas E. Lima Baschera;Alessandro Lidozzi;Giuseppe Zummo;Luca Saraceno;Fabio Riccardi;Fernando Ortenzi;Marco di Benedetto;Luca Solero","doi":"10.1109/OJIA.2024.3451990","DOIUrl":null,"url":null,"abstract":"This article deals with a comprehensive analysis and performance evaluation of a fully integrated two-phase cooling system for power converters. A suitable test bed has been properly manufactured to perform the experimental campaign for the evaluation of the benefits and to deploy a dedicated management procedure of the two-phase cooling. The system is tested under real operating conditions, in which the system is employed for cooling a 1200-V 100-A insulated-gate bipolar transistor (IGBT) power module of an inverter controlling a permanent magnet synchronous machine. The experimental results show the inverter temperature behavior in start-up for different flow rates of coolant and different temperatures of the fluid on the secondary system. In the steady-state operation, using lower coolant flow rates in the primary circuit achieved equal or even better cooling for the IGBT module compared with higher flow rates. With respect to traditional cooling approaches, the proposed arrangement allows a greater extraction of the heat at a very low flow rate of the cooling fluid, even with standard industrial grade heat sinks, which motivates the use of this cooling technology for the next generation of power electronics converters.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"381-390"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663977","citationCount":"0","resultStr":"{\"title\":\"Advances in Two-Phase Cooling for Next Power Electronics Converters\",\"authors\":\"Nicolas E. Lima Baschera;Alessandro Lidozzi;Giuseppe Zummo;Luca Saraceno;Fabio Riccardi;Fernando Ortenzi;Marco di Benedetto;Luca Solero\",\"doi\":\"10.1109/OJIA.2024.3451990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with a comprehensive analysis and performance evaluation of a fully integrated two-phase cooling system for power converters. A suitable test bed has been properly manufactured to perform the experimental campaign for the evaluation of the benefits and to deploy a dedicated management procedure of the two-phase cooling. The system is tested under real operating conditions, in which the system is employed for cooling a 1200-V 100-A insulated-gate bipolar transistor (IGBT) power module of an inverter controlling a permanent magnet synchronous machine. The experimental results show the inverter temperature behavior in start-up for different flow rates of coolant and different temperatures of the fluid on the secondary system. In the steady-state operation, using lower coolant flow rates in the primary circuit achieved equal or even better cooling for the IGBT module compared with higher flow rates. With respect to traditional cooling approaches, the proposed arrangement allows a greater extraction of the heat at a very low flow rate of the cooling fluid, even with standard industrial grade heat sinks, which motivates the use of this cooling technology for the next generation of power electronics converters.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"5 \",\"pages\":\"381-390\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663977\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663977/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10663977/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了对用于功率转换器的全集成两相冷却系统的综合分析和性能评估。已适当制造了一个合适的试验台,用于执行实验活动,以评估其效益,并部署专门的两相冷却管理程序。该系统在实际运行条件下进行了测试,在测试中,该系统被用于冷却控制永磁同步机的变频器的 1200-V 100-A 绝缘栅双极晶体管 (IGBT) 功率模块。实验结果显示了逆变器在启动时不同冷却剂流速和二次系统不同流体温度下的温度特性。在稳态运行中,在一次回路中使用较低流量的冷却剂与较高流量的冷却剂相比,对 IGBT 模块的冷却效果相同甚至更好。与传统的冷却方法相比,即使使用标准的工业级散热器,所建议的布置方式也能以极低的冷却液流速提取更多的热量,这就促使下一代电力电子转换器使用这种冷却技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Two-Phase Cooling for Next Power Electronics Converters
This article deals with a comprehensive analysis and performance evaluation of a fully integrated two-phase cooling system for power converters. A suitable test bed has been properly manufactured to perform the experimental campaign for the evaluation of the benefits and to deploy a dedicated management procedure of the two-phase cooling. The system is tested under real operating conditions, in which the system is employed for cooling a 1200-V 100-A insulated-gate bipolar transistor (IGBT) power module of an inverter controlling a permanent magnet synchronous machine. The experimental results show the inverter temperature behavior in start-up for different flow rates of coolant and different temperatures of the fluid on the secondary system. In the steady-state operation, using lower coolant flow rates in the primary circuit achieved equal or even better cooling for the IGBT module compared with higher flow rates. With respect to traditional cooling approaches, the proposed arrangement allows a greater extraction of the heat at a very low flow rate of the cooling fluid, even with standard industrial grade heat sinks, which motivates the use of this cooling technology for the next generation of power electronics converters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信