N Stewart Pritchard,Kambrie M Brandt,Garrett S Bullock,David W Kruse,Christopher M Miles,Justin B Moore,Joel D Stitzel,Jillian E Urban
{"title":"安全修改对女子艺术体操常用技巧中头部运动学的影响。","authors":"N Stewart Pritchard,Kambrie M Brandt,Garrett S Bullock,David W Kruse,Christopher M Miles,Justin B Moore,Joel D Stitzel,Jillian E Urban","doi":"10.1080/02640414.2024.2394747","DOIUrl":null,"url":null,"abstract":"The objective of this study was to evaluate the effect of skill modifications on head motion experienced during women's artistic gymnastics skills. Nine gymnasts (four beginner and five advanced) completed three trials of up to 24 skill progressions, each consisting of a skill and two progressive safety modifications. Gymnasts were instrumented with mouthpiece sensors embedded with an accelerometer and gyroscope collecting motion data at 200, 300, and 500 Hz during each skill performance. Peak-to-peak linear and rotational kinematics during contact phases and peak rotational kinematics during non-contact phases were computed. A mixed-effects model was used to compare differences in modification status nested within skill categories. Timer skills (i.e. drills that simulate performance of a gymnastics skill) resulted in the highest median ΔLA and ΔRA of all skill categories, and 132 skill performances exceeded 10 g ΔLA during a contact phase. Modifications were associated with significant reductions in head kinematics during contact phases of timers, floor skills, bar releases, and vault skills. Gymnasts can be exposed to direct and indirect head accelerations at magnitudes consistent with other youth contact sports, and common safety modifications may be effective at reducing head motion during contact and non-contact phases of gymnastics skills.","PeriodicalId":17066,"journal":{"name":"Journal of Sports Sciences","volume":"2016 1","pages":"1-14"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of safety modifications on head kinematics experienced during common skills in women's artistic gymnastics.\",\"authors\":\"N Stewart Pritchard,Kambrie M Brandt,Garrett S Bullock,David W Kruse,Christopher M Miles,Justin B Moore,Joel D Stitzel,Jillian E Urban\",\"doi\":\"10.1080/02640414.2024.2394747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study was to evaluate the effect of skill modifications on head motion experienced during women's artistic gymnastics skills. Nine gymnasts (four beginner and five advanced) completed three trials of up to 24 skill progressions, each consisting of a skill and two progressive safety modifications. Gymnasts were instrumented with mouthpiece sensors embedded with an accelerometer and gyroscope collecting motion data at 200, 300, and 500 Hz during each skill performance. Peak-to-peak linear and rotational kinematics during contact phases and peak rotational kinematics during non-contact phases were computed. A mixed-effects model was used to compare differences in modification status nested within skill categories. Timer skills (i.e. drills that simulate performance of a gymnastics skill) resulted in the highest median ΔLA and ΔRA of all skill categories, and 132 skill performances exceeded 10 g ΔLA during a contact phase. Modifications were associated with significant reductions in head kinematics during contact phases of timers, floor skills, bar releases, and vault skills. Gymnasts can be exposed to direct and indirect head accelerations at magnitudes consistent with other youth contact sports, and common safety modifications may be effective at reducing head motion during contact and non-contact phases of gymnastics skills.\",\"PeriodicalId\":17066,\"journal\":{\"name\":\"Journal of Sports Sciences\",\"volume\":\"2016 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sports Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02640414.2024.2394747\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02640414.2024.2394747","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
The effect of safety modifications on head kinematics experienced during common skills in women's artistic gymnastics.
The objective of this study was to evaluate the effect of skill modifications on head motion experienced during women's artistic gymnastics skills. Nine gymnasts (four beginner and five advanced) completed three trials of up to 24 skill progressions, each consisting of a skill and two progressive safety modifications. Gymnasts were instrumented with mouthpiece sensors embedded with an accelerometer and gyroscope collecting motion data at 200, 300, and 500 Hz during each skill performance. Peak-to-peak linear and rotational kinematics during contact phases and peak rotational kinematics during non-contact phases were computed. A mixed-effects model was used to compare differences in modification status nested within skill categories. Timer skills (i.e. drills that simulate performance of a gymnastics skill) resulted in the highest median ΔLA and ΔRA of all skill categories, and 132 skill performances exceeded 10 g ΔLA during a contact phase. Modifications were associated with significant reductions in head kinematics during contact phases of timers, floor skills, bar releases, and vault skills. Gymnasts can be exposed to direct and indirect head accelerations at magnitudes consistent with other youth contact sports, and common safety modifications may be effective at reducing head motion during contact and non-contact phases of gymnastics skills.
期刊介绍:
The Journal of Sports Sciences has an international reputation for publishing articles of a high standard and is both Medline and Clarivate Analytics-listed. It publishes research on various aspects of the sports and exercise sciences, including anatomy, biochemistry, biomechanics, performance analysis, physiology, psychology, sports medicine and health, as well as coaching and talent identification, kinanthropometry and other interdisciplinary perspectives.
The emphasis of the Journal is on the human sciences, broadly defined and applied to sport and exercise. Besides experimental work in human responses to exercise, the subjects covered will include human responses to technologies such as the design of sports equipment and playing facilities, research in training, selection, performance prediction or modification, and stress reduction or manifestation. Manuscripts considered for publication include those dealing with original investigations of exercise, validation of technological innovations in sport or comprehensive reviews of topics relevant to the scientific study of sport.