人类粪便与木质生物质共同热解过程中的碳流和生物炭稳定性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
M. E. Koulouri, M. Qiu, M. R. Templeton and G. D. Fowler
{"title":"人类粪便与木质生物质共同热解过程中的碳流和生物炭稳定性","authors":"M. E. Koulouri, M. Qiu, M. R. Templeton and G. D. Fowler","doi":"10.1039/D4EW00513A","DOIUrl":null,"url":null,"abstract":"<p >As non-sewered toilets are now the most commonly used sanitation facilities, the faecal sludge management (FSM) sector is starting to be recognised as an important actor for global carbon management. The development of systematic strategies to calculate avoided emissions and carbon storage opportunities is currently constrained by a lack of understanding of carbon flows during faecal sludge treatment. This study investigated carbon sequestration potential for faecal sludge treatment systems that involve co-pyrolysis of human faeces (HF) and wood biomass (WB) at different blending ratios HF : WB (100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100) and temperatures (450, 550, 650 °C). The systematic investigation of analytical biochar stability parameters and the quantification of carbon flows among pyrolysis products were carried out for the first time in the context of faecal sludge. The stability of the produced biochars was assessed based on their remaining volatility, carbon structure (H/C and O/C ratios, SEM and FTIR analyses) and oxidation resistance (chemical oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and thermal degradation by thermogravimetric analysis [<em>R</em><small><sub>50</sub></small> index]). Overall, co-pyrolysis of HF and WB improved carbon fixation and biochar stability, enhancing carbon sequestration potential compared to pyrolysis of pure faecal feedstocks. Biochars produced from 50 : 50 HF : WB blends at 550 °C had the highest carbon retention (41.1%); this feedstock blending ratio corresponds to ∼30 g dry wood added in toilets as a cover material (per user per day), based on the expected daily excretion quantities. For these conditions, the H/C, O/C ratios, H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidation and <em>R</em><small><sub>50</sub></small> index values suggest that the produced biochars have developed an aromatic structure and are suitable for long-term carbon storage. The biochar characteristics were found to be more dependent on feedstock composition than pyrolysis temperature – provided that the temperature reached was sufficient to ensure completion of the main pyrolytic reactions (≥500 °C) – while carbon flows to the bio-oil and non-condensable gas fractions were significantly influenced by pyrolysis operational parameters (retention time and inert gas flow rate). The formation of CaCO<small><sub>3</sub></small> was observed <em>via</em> SEM/EDX and can be further investigated as a potential additional carbon storage mechanism in FSM. The findings of this research can be used to create a methodological dataset to inform carbon assessments and future modelling applications, paving the way towards the establishment of carbon-negative FSM.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00513a?page=search","citationCount":"0","resultStr":"{\"title\":\"Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass†\",\"authors\":\"M. E. Koulouri, M. Qiu, M. R. Templeton and G. D. Fowler\",\"doi\":\"10.1039/D4EW00513A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As non-sewered toilets are now the most commonly used sanitation facilities, the faecal sludge management (FSM) sector is starting to be recognised as an important actor for global carbon management. The development of systematic strategies to calculate avoided emissions and carbon storage opportunities is currently constrained by a lack of understanding of carbon flows during faecal sludge treatment. This study investigated carbon sequestration potential for faecal sludge treatment systems that involve co-pyrolysis of human faeces (HF) and wood biomass (WB) at different blending ratios HF : WB (100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100) and temperatures (450, 550, 650 °C). The systematic investigation of analytical biochar stability parameters and the quantification of carbon flows among pyrolysis products were carried out for the first time in the context of faecal sludge. The stability of the produced biochars was assessed based on their remaining volatility, carbon structure (H/C and O/C ratios, SEM and FTIR analyses) and oxidation resistance (chemical oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and thermal degradation by thermogravimetric analysis [<em>R</em><small><sub>50</sub></small> index]). Overall, co-pyrolysis of HF and WB improved carbon fixation and biochar stability, enhancing carbon sequestration potential compared to pyrolysis of pure faecal feedstocks. Biochars produced from 50 : 50 HF : WB blends at 550 °C had the highest carbon retention (41.1%); this feedstock blending ratio corresponds to ∼30 g dry wood added in toilets as a cover material (per user per day), based on the expected daily excretion quantities. For these conditions, the H/C, O/C ratios, H<small><sub>2</sub></small>O<small><sub>2</sub></small> oxidation and <em>R</em><small><sub>50</sub></small> index values suggest that the produced biochars have developed an aromatic structure and are suitable for long-term carbon storage. The biochar characteristics were found to be more dependent on feedstock composition than pyrolysis temperature – provided that the temperature reached was sufficient to ensure completion of the main pyrolytic reactions (≥500 °C) – while carbon flows to the bio-oil and non-condensable gas fractions were significantly influenced by pyrolysis operational parameters (retention time and inert gas flow rate). The formation of CaCO<small><sub>3</sub></small> was observed <em>via</em> SEM/EDX and can be further investigated as a potential additional carbon storage mechanism in FSM. The findings of this research can be used to create a methodological dataset to inform carbon assessments and future modelling applications, paving the way towards the establishment of carbon-negative FSM.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00513a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00513a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00513a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于非下水道厕所是目前最常用的卫生设施,粪便污泥管理(FSM)部门开始被视为全球碳管理的重要参与者。目前,由于缺乏对粪便污泥处理过程中碳流动的了解,计算避免排放和碳封存机会的系统性战略的制定受到了限制。本研究调查了粪便污泥处理系统的碳封存潜力,该系统涉及人类粪便(HF)和木材生物质(WB)在不同混合比例 HF :WB(100:0、75:25、50:50、25:75、0:100)和温度(450、550、650 °C)。在粪便污泥方面,首次对生物炭稳定性分析参数和热解产物中碳流量的量化进行了系统研究。根据剩余挥发性、碳结构(H/C 和 O/C 比率、扫描电镜和傅立叶变换红外分析)和抗氧化性(H2O2 化学氧化和热重分析[R50 指数]热降解)评估了所生产生物炭的稳定性。总体而言,与纯粪便原料热解相比,HF 和 WB 的协同热解提高了碳固定和生物炭稳定性,增强了固碳潜力。用 50 :50 HF :在 550 °C 下,WB 混合物的碳保留率最高(41.1%);根据预计的每日排泄量,这一原料混合比例相当于在厕所中添加 30 克干木材作为覆盖材料(每个用户每天)。在这些条件下,H/C、O/C 比率、H2O2 氧化值和 R50 指数值表明,生产的生物炭已形成芳香结构,适合长期碳储存。研究发现,生物炭的特性更多地取决于原料成分而非热解温度--前提是所达到的温度足以确保完成主要热解反应(≥500 °C)--而流向生物油和不凝性气体馏分的碳则受到热解操作参数(停留时间和惰性气体流速)的显著影响。通过 SEM/EDX 观察到 CaCO3 的形成,可将其作为 FSM 中潜在的额外碳储存机制进行进一步研究。这项研究的结果可用于创建一个方法数据集,为碳评估和未来的建模应用提供信息,为建立负碳无害环境管理铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass†

Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass†

Carbon flows and biochar stability during co-pyrolysis of human faeces with wood biomass†

As non-sewered toilets are now the most commonly used sanitation facilities, the faecal sludge management (FSM) sector is starting to be recognised as an important actor for global carbon management. The development of systematic strategies to calculate avoided emissions and carbon storage opportunities is currently constrained by a lack of understanding of carbon flows during faecal sludge treatment. This study investigated carbon sequestration potential for faecal sludge treatment systems that involve co-pyrolysis of human faeces (HF) and wood biomass (WB) at different blending ratios HF : WB (100 : 0, 75 : 25, 50 : 50, 25 : 75, 0 : 100) and temperatures (450, 550, 650 °C). The systematic investigation of analytical biochar stability parameters and the quantification of carbon flows among pyrolysis products were carried out for the first time in the context of faecal sludge. The stability of the produced biochars was assessed based on their remaining volatility, carbon structure (H/C and O/C ratios, SEM and FTIR analyses) and oxidation resistance (chemical oxidation by H2O2 and thermal degradation by thermogravimetric analysis [R50 index]). Overall, co-pyrolysis of HF and WB improved carbon fixation and biochar stability, enhancing carbon sequestration potential compared to pyrolysis of pure faecal feedstocks. Biochars produced from 50 : 50 HF : WB blends at 550 °C had the highest carbon retention (41.1%); this feedstock blending ratio corresponds to ∼30 g dry wood added in toilets as a cover material (per user per day), based on the expected daily excretion quantities. For these conditions, the H/C, O/C ratios, H2O2 oxidation and R50 index values suggest that the produced biochars have developed an aromatic structure and are suitable for long-term carbon storage. The biochar characteristics were found to be more dependent on feedstock composition than pyrolysis temperature – provided that the temperature reached was sufficient to ensure completion of the main pyrolytic reactions (≥500 °C) – while carbon flows to the bio-oil and non-condensable gas fractions were significantly influenced by pyrolysis operational parameters (retention time and inert gas flow rate). The formation of CaCO3 was observed via SEM/EDX and can be further investigated as a potential additional carbon storage mechanism in FSM. The findings of this research can be used to create a methodological dataset to inform carbon assessments and future modelling applications, paving the way towards the establishment of carbon-negative FSM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信