Yeonjun Sung, Keonghoon Kim, Jinhee Park, Seongwook Kang, Chulsoo Park, Seongwoo Cho, Changsoo Kim
{"title":"蜡质小麦(Triticum aestivum L.)中一种新型 Wx-B1 等位基因的鉴定和特征描述","authors":"Yeonjun Sung, Keonghoon Kim, Jinhee Park, Seongwook Kang, Chulsoo Park, Seongwoo Cho, Changsoo Kim","doi":"10.1007/s11816-024-00925-1","DOIUrl":null,"url":null,"abstract":"<p>The composition of starch, which includes amylose and amylopectin, greatly affects the quality and characteristics of flour. The balance between these components is crucial in determining the properties and structure of starch. The waxy (<i>Wx</i>) gene encodes granule-bound starch synthase I (GBSSI), which is responsible for amylose biosynthesis in the endosperm. Gunji-3 was created through a cross between the waxy-type wheat cultivar Shinmichal 1 and the bread wheat cultivar Keumkang. Upon comparing the <i>Wx-B1</i> allele encoding GBSSI in Gunji-3 with the <i>Wx-B1</i> allele in Shinmichal 1 and <i>Wx-B1b</i>, a total of four SNPs and one deletion were identified in Gunji-3. Additionally, when comparing amino acid sequences with <i>Wx-B1</i> alleles, differences at three positions were found, indicating that the mutant carried a new <i>Wx-B1</i> allele named <i>Wx-B1o</i>. The physicochemical properties of Gunji-3 starch were characterized by a lower amylose content of 2.30% compared to 7.45% in Shinmichal 1 and 27.67% in Keumkang. Additionally, it exhibited a higher water retention capacity of 84.66% compared to 75.91% in Shinmichal 1 and 66.07% in Keumkang. The newly introduced waxy-type wheat could provide an essential basis for understanding wheat's starch characteristics and various breeding programs.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.)\",\"authors\":\"Yeonjun Sung, Keonghoon Kim, Jinhee Park, Seongwook Kang, Chulsoo Park, Seongwoo Cho, Changsoo Kim\",\"doi\":\"10.1007/s11816-024-00925-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The composition of starch, which includes amylose and amylopectin, greatly affects the quality and characteristics of flour. The balance between these components is crucial in determining the properties and structure of starch. The waxy (<i>Wx</i>) gene encodes granule-bound starch synthase I (GBSSI), which is responsible for amylose biosynthesis in the endosperm. Gunji-3 was created through a cross between the waxy-type wheat cultivar Shinmichal 1 and the bread wheat cultivar Keumkang. Upon comparing the <i>Wx-B1</i> allele encoding GBSSI in Gunji-3 with the <i>Wx-B1</i> allele in Shinmichal 1 and <i>Wx-B1b</i>, a total of four SNPs and one deletion were identified in Gunji-3. Additionally, when comparing amino acid sequences with <i>Wx-B1</i> alleles, differences at three positions were found, indicating that the mutant carried a new <i>Wx-B1</i> allele named <i>Wx-B1o</i>. The physicochemical properties of Gunji-3 starch were characterized by a lower amylose content of 2.30% compared to 7.45% in Shinmichal 1 and 27.67% in Keumkang. Additionally, it exhibited a higher water retention capacity of 84.66% compared to 75.91% in Shinmichal 1 and 66.07% in Keumkang. The newly introduced waxy-type wheat could provide an essential basis for understanding wheat's starch characteristics and various breeding programs.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-024-00925-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00925-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.)
The composition of starch, which includes amylose and amylopectin, greatly affects the quality and characteristics of flour. The balance between these components is crucial in determining the properties and structure of starch. The waxy (Wx) gene encodes granule-bound starch synthase I (GBSSI), which is responsible for amylose biosynthesis in the endosperm. Gunji-3 was created through a cross between the waxy-type wheat cultivar Shinmichal 1 and the bread wheat cultivar Keumkang. Upon comparing the Wx-B1 allele encoding GBSSI in Gunji-3 with the Wx-B1 allele in Shinmichal 1 and Wx-B1b, a total of four SNPs and one deletion were identified in Gunji-3. Additionally, when comparing amino acid sequences with Wx-B1 alleles, differences at three positions were found, indicating that the mutant carried a new Wx-B1 allele named Wx-B1o. The physicochemical properties of Gunji-3 starch were characterized by a lower amylose content of 2.30% compared to 7.45% in Shinmichal 1 and 27.67% in Keumkang. Additionally, it exhibited a higher water retention capacity of 84.66% compared to 75.91% in Shinmichal 1 and 66.07% in Keumkang. The newly introduced waxy-type wheat could provide an essential basis for understanding wheat's starch characteristics and various breeding programs.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.