Gernot Steindl;Tobias Schwarzinger;Katrin Schreiberhuber;Fajar J. Ekaputra
{"title":"为构建可解释的网络物理系统而努力实现语义事件处理","authors":"Gernot Steindl;Tobias Schwarzinger;Katrin Schreiberhuber;Fajar J. Ekaputra","doi":"10.1109/OJIES.2024.3447001","DOIUrl":null,"url":null,"abstract":"In the context of cyber-physical systems (CPS), understanding system behaviors is crucial for ensuring reliability, efficiency, and trust. However, due to the increasing complexity of the modern CPS, gaining such understanding is becoming more challenging. In this article we provide a foundation for explaining system behavior through detected system events. To this end, the article proposes a technology-agnostic, semantic event-handling module to address the challenge of enhancing explainability within CPS. This module is designed to be part of the common architecture for Explainable CPS and, therefore, can be integrated seamlessly into existing CPS frameworks by providing different interfaces to access detected events. Two case studies in the smart building and smart grid domain are carried out to demonstrate the feasibility and efficacy of the approach, utilizing an open-source software stack for the prototypical implementation. A qualitative evaluation of the proposed approach, based on the ISO/IEC 25010:2023, was used to analyze the software design. Our evaluation result shows that the semantic event-handling module is appropriate as a generic approach to handling events within a CPS. The module becomes a foundation for incorporating explainability into the system, which is needed as a foundation to ensure human trust and enable informed decision-making.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"928-945"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643286","citationCount":"0","resultStr":"{\"title\":\"Toward Semantic Event-Handling for Building Explainable Cyber-Physical Systems\",\"authors\":\"Gernot Steindl;Tobias Schwarzinger;Katrin Schreiberhuber;Fajar J. Ekaputra\",\"doi\":\"10.1109/OJIES.2024.3447001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of cyber-physical systems (CPS), understanding system behaviors is crucial for ensuring reliability, efficiency, and trust. However, due to the increasing complexity of the modern CPS, gaining such understanding is becoming more challenging. In this article we provide a foundation for explaining system behavior through detected system events. To this end, the article proposes a technology-agnostic, semantic event-handling module to address the challenge of enhancing explainability within CPS. This module is designed to be part of the common architecture for Explainable CPS and, therefore, can be integrated seamlessly into existing CPS frameworks by providing different interfaces to access detected events. Two case studies in the smart building and smart grid domain are carried out to demonstrate the feasibility and efficacy of the approach, utilizing an open-source software stack for the prototypical implementation. A qualitative evaluation of the proposed approach, based on the ISO/IEC 25010:2023, was used to analyze the software design. Our evaluation result shows that the semantic event-handling module is appropriate as a generic approach to handling events within a CPS. The module becomes a foundation for incorporating explainability into the system, which is needed as a foundation to ensure human trust and enable informed decision-making.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"928-945\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643286/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643286/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Toward Semantic Event-Handling for Building Explainable Cyber-Physical Systems
In the context of cyber-physical systems (CPS), understanding system behaviors is crucial for ensuring reliability, efficiency, and trust. However, due to the increasing complexity of the modern CPS, gaining such understanding is becoming more challenging. In this article we provide a foundation for explaining system behavior through detected system events. To this end, the article proposes a technology-agnostic, semantic event-handling module to address the challenge of enhancing explainability within CPS. This module is designed to be part of the common architecture for Explainable CPS and, therefore, can be integrated seamlessly into existing CPS frameworks by providing different interfaces to access detected events. Two case studies in the smart building and smart grid domain are carried out to demonstrate the feasibility and efficacy of the approach, utilizing an open-source software stack for the prototypical implementation. A qualitative evaluation of the proposed approach, based on the ISO/IEC 25010:2023, was used to analyze the software design. Our evaluation result shows that the semantic event-handling module is appropriate as a generic approach to handling events within a CPS. The module becomes a foundation for incorporating explainability into the system, which is needed as a foundation to ensure human trust and enable informed decision-making.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.