{"title":"具有无缓冲器串联 10kV SiC MOSFET 的中压 3L-NPC 电源转换器中串联的 10kV SiC JBS 二极管之间的动态电压平衡","authors":"Sanket Parashar;Nithin Kolli;Raj Kumar Kokkonda;Ajit Kanale;Subhashish Bhattacharya;Bantval Jayant Baliga","doi":"10.1109/OJIES.2024.3450509","DOIUrl":null,"url":null,"abstract":"This article addresses the mitigation of dynamic voltage imbalance in series-connected 10 kV silicon carbide (SiC) JBS diodes within a three-level NPC (3L-NPC) converter using active turn-\n<sc>off</small>\n delay control across complementary series-connected 10 kV SiC \n<sc>mosfet</small>\ns. The implementation of active turn-\n<sc>off</small>\n delay control in SiC \n<sc>mosfet</small>\ns eliminates the need for passive \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubbers, which otherwise increase the switching \n<inline-formula><tex-math>$dv/dt$</tex-math></inline-formula>\n mismatch and snubber current across the diodes. In addition, parasitic base-plate capacitance across \n<sc>mosfet</small>\ns and diodes, along with parasitic bus bar and snubber inductance in the commutation path, contribute to turn-\n<sc>off</small>\n voltage mismatch and snubber loss in series-connected 10 kV SiC JBS diodes. The mismatch in nonlinear capacitance of series-connected devices (\n<sc>mosfet</small>\ns and diodes) and the nonlinear \n<sc>mosfet</small>\n \n<inline-formula><tex-math>$i$</tex-math></inline-formula>\n<inline-formula><tex-math>$-$</tex-math></inline-formula>\n<inline-formula><tex-math>$v_{gs}$</tex-math></inline-formula>\n curve affect the turn-\n<sc>on</small>\n and turn-\n<sc>off</small>\n voltage transitions between complementary switching \n<sc>mosfet</small>\ns and diodes, leading to variations in turn-\n<sc>off</small>\n voltage mismatch and snubber losses. The 3L-NPC converter has eight types of switching transition, complicating the analysis of \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubber design. This complexity is further increased by nonlinear device parameters, parasitic capacitance, and inductance in the commutation path for each of the eight 10 kV SiC \n<sc>mosfet</small>\ns and four 10 kV SiC JBS diodes. To address these challenges, this research develops a mathematical model for the switching transition between 10 kV SiC \n<sc>mosfet</small>\ns and complementary 10 kV SiC JBS diodes in a two-level clamped inductive switching (CIS) test setup. The model considers the effects of parasitic base-plate capacitance and the absence of an \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubber due to active turn-\n<sc>off</small>\n delay control across series-connected SiC \n<sc>mosfet</small>\ns. Subsequently, the mathematical model is refined using an iterative algorithm to account for mismatches in nonlinear device capacitance of \n<sc>mosfet</small>\ns and diodes, as well as the nonlinear \n<inline-formula><tex-math>$i$</tex-math></inline-formula>\n<inline-formula><tex-math>$-$</tex-math></inline-formula>\n<inline-formula><tex-math>$v_{gs}$</tex-math></inline-formula>\n curve of \n<sc>mosfet</small>\ns during the switching transition of the diode. This refined model is then used to design the \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubber for series-connected 10 kV SiC JBS diodes and to optimize the turn-\n<sc>on</small>\n gate resistance of complementary 10 kV SiC \n<sc>mosfet</small>\ns on two-level CIS test benches (TB1 and TB2). Following this, the design parameters are systematically adjusted using experimental results from 3L-NPC test benches 3 to 5. This article provides simplified steps for the design and analysis of the \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubber in various test benches, validated by experimental data. The 3L-NPC converter with the final \n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\n snubber design achieved 99.2% efficiency and a 35 V turn-\n<sc>off</small>\n voltage mismatch. The maximum error between the theoretical model and experimental data is 4.8%.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1058-1084"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10652239","citationCount":"0","resultStr":"{\"title\":\"Dynamic Voltage Balancing Across Series-Connected 10 kV SiC JBS Diodes in Medium Voltage 3L-NPC Power Converter Having Snubberless Series-Connected 10 kV SiC MOSFETs\",\"authors\":\"Sanket Parashar;Nithin Kolli;Raj Kumar Kokkonda;Ajit Kanale;Subhashish Bhattacharya;Bantval Jayant Baliga\",\"doi\":\"10.1109/OJIES.2024.3450509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the mitigation of dynamic voltage imbalance in series-connected 10 kV silicon carbide (SiC) JBS diodes within a three-level NPC (3L-NPC) converter using active turn-\\n<sc>off</small>\\n delay control across complementary series-connected 10 kV SiC \\n<sc>mosfet</small>\\ns. The implementation of active turn-\\n<sc>off</small>\\n delay control in SiC \\n<sc>mosfet</small>\\ns eliminates the need for passive \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubbers, which otherwise increase the switching \\n<inline-formula><tex-math>$dv/dt$</tex-math></inline-formula>\\n mismatch and snubber current across the diodes. In addition, parasitic base-plate capacitance across \\n<sc>mosfet</small>\\ns and diodes, along with parasitic bus bar and snubber inductance in the commutation path, contribute to turn-\\n<sc>off</small>\\n voltage mismatch and snubber loss in series-connected 10 kV SiC JBS diodes. The mismatch in nonlinear capacitance of series-connected devices (\\n<sc>mosfet</small>\\ns and diodes) and the nonlinear \\n<sc>mosfet</small>\\n \\n<inline-formula><tex-math>$i$</tex-math></inline-formula>\\n<inline-formula><tex-math>$-$</tex-math></inline-formula>\\n<inline-formula><tex-math>$v_{gs}$</tex-math></inline-formula>\\n curve affect the turn-\\n<sc>on</small>\\n and turn-\\n<sc>off</small>\\n voltage transitions between complementary switching \\n<sc>mosfet</small>\\ns and diodes, leading to variations in turn-\\n<sc>off</small>\\n voltage mismatch and snubber losses. The 3L-NPC converter has eight types of switching transition, complicating the analysis of \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubber design. This complexity is further increased by nonlinear device parameters, parasitic capacitance, and inductance in the commutation path for each of the eight 10 kV SiC \\n<sc>mosfet</small>\\ns and four 10 kV SiC JBS diodes. To address these challenges, this research develops a mathematical model for the switching transition between 10 kV SiC \\n<sc>mosfet</small>\\ns and complementary 10 kV SiC JBS diodes in a two-level clamped inductive switching (CIS) test setup. The model considers the effects of parasitic base-plate capacitance and the absence of an \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubber due to active turn-\\n<sc>off</small>\\n delay control across series-connected SiC \\n<sc>mosfet</small>\\ns. Subsequently, the mathematical model is refined using an iterative algorithm to account for mismatches in nonlinear device capacitance of \\n<sc>mosfet</small>\\ns and diodes, as well as the nonlinear \\n<inline-formula><tex-math>$i$</tex-math></inline-formula>\\n<inline-formula><tex-math>$-$</tex-math></inline-formula>\\n<inline-formula><tex-math>$v_{gs}$</tex-math></inline-formula>\\n curve of \\n<sc>mosfet</small>\\ns during the switching transition of the diode. This refined model is then used to design the \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubber for series-connected 10 kV SiC JBS diodes and to optimize the turn-\\n<sc>on</small>\\n gate resistance of complementary 10 kV SiC \\n<sc>mosfet</small>\\ns on two-level CIS test benches (TB1 and TB2). Following this, the design parameters are systematically adjusted using experimental results from 3L-NPC test benches 3 to 5. This article provides simplified steps for the design and analysis of the \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubber in various test benches, validated by experimental data. The 3L-NPC converter with the final \\n<inline-formula><tex-math>$RC$</tex-math></inline-formula>\\n snubber design achieved 99.2% efficiency and a 35 V turn-\\n<sc>off</small>\\n voltage mismatch. The maximum error between the theoretical model and experimental data is 4.8%.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"1058-1084\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10652239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10652239/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10652239/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了在三电平 NPC(3L-NPC)转换器中,利用互补串联的 10 kV SiC mosfets 上的有源关断延迟控制来缓解串联连接的 10 kV 碳化硅(SiC)JBS 二极管的动态电压不平衡问题。在碳化硅镶嵌晶体管中实施有源关断延迟控制,无需使用无源 $RC$ 缓冲器,否则会增加二极管上的开关 $dv/dt$ 失配和缓冲电流。此外,mosfets 和二极管上的寄生基板电容,以及换向路径中的寄生母线和缓冲器电感,都会导致串联 10 kV SiC JBS 二极管的关断电压失配和缓冲器损耗。串联器件(mosfet 和二极管)非线性电容的不匹配以及非线性 mosfet $i$$-$v_{gs}$ 曲线会影响互补开关 mosfet 和二极管之间的导通和关断电压转换,从而导致关断电压不匹配和缓冲器损耗的变化。3L-NPC 转换器有八种类型的开关转换,这使 $RC$ 缓冲器的设计分析变得更加复杂。8 个 10 kV SiC mosfets 和 4 个 10 kV SiC JBS 二极管换向路径中的非线性器件参数、寄生电容和电感进一步增加了这种复杂性。为了应对这些挑战,本研究针对两级箝位电感开关 (CIS) 测试装置中 10 kV SiC mosfets 和互补 10 kV SiC JBS 二极管之间的开关转换建立了一个数学模型。该模型考虑了寄生基板电容的影响,以及由于串联 SiC mosfets 的主动关断延迟控制而不存在 $RC$ 缓冲器的情况。随后,利用迭代算法对数学模型进行了改进,以考虑到晶体管和二极管非线性器件电容的不匹配,以及晶体管在二极管开关转换期间的非线性 $i$$-$v_{gs}$ 曲线。然后,利用这一完善的模型设计串联 10 kV SiC JBS 二极管的 $RC$ 缓冲器,并在两级 CIS 测试台(TB1 和 TB2)上优化互补 10 kV SiC mosfets 的导通栅极电阻。随后,利用 3L-NPC 测试台 3 至 5 的实验结果对设计参数进行了系统调整。本文提供了在各种测试台中设计和分析 $RC$ 缓冲器的简化步骤,并通过实验数据进行了验证。采用最终的 $RC$ 缓冲器设计的 3L-NPC 转换器实现了 99.2% 的效率和 35 V 的关断电压失配。理论模型与实验数据之间的最大误差为 4.8%。
Dynamic Voltage Balancing Across Series-Connected 10 kV SiC JBS Diodes in Medium Voltage 3L-NPC Power Converter Having Snubberless Series-Connected 10 kV SiC MOSFETs
This article addresses the mitigation of dynamic voltage imbalance in series-connected 10 kV silicon carbide (SiC) JBS diodes within a three-level NPC (3L-NPC) converter using active turn-
off
delay control across complementary series-connected 10 kV SiC
mosfet
s. The implementation of active turn-
off
delay control in SiC
mosfet
s eliminates the need for passive
$RC$
snubbers, which otherwise increase the switching
$dv/dt$
mismatch and snubber current across the diodes. In addition, parasitic base-plate capacitance across
mosfet
s and diodes, along with parasitic bus bar and snubber inductance in the commutation path, contribute to turn-
off
voltage mismatch and snubber loss in series-connected 10 kV SiC JBS diodes. The mismatch in nonlinear capacitance of series-connected devices (
mosfet
s and diodes) and the nonlinear
mosfet
$i$$-$$v_{gs}$
curve affect the turn-
on
and turn-
off
voltage transitions between complementary switching
mosfet
s and diodes, leading to variations in turn-
off
voltage mismatch and snubber losses. The 3L-NPC converter has eight types of switching transition, complicating the analysis of
$RC$
snubber design. This complexity is further increased by nonlinear device parameters, parasitic capacitance, and inductance in the commutation path for each of the eight 10 kV SiC
mosfet
s and four 10 kV SiC JBS diodes. To address these challenges, this research develops a mathematical model for the switching transition between 10 kV SiC
mosfet
s and complementary 10 kV SiC JBS diodes in a two-level clamped inductive switching (CIS) test setup. The model considers the effects of parasitic base-plate capacitance and the absence of an
$RC$
snubber due to active turn-
off
delay control across series-connected SiC
mosfet
s. Subsequently, the mathematical model is refined using an iterative algorithm to account for mismatches in nonlinear device capacitance of
mosfet
s and diodes, as well as the nonlinear
$i$$-$$v_{gs}$
curve of
mosfet
s during the switching transition of the diode. This refined model is then used to design the
$RC$
snubber for series-connected 10 kV SiC JBS diodes and to optimize the turn-
on
gate resistance of complementary 10 kV SiC
mosfet
s on two-level CIS test benches (TB1 and TB2). Following this, the design parameters are systematically adjusted using experimental results from 3L-NPC test benches 3 to 5. This article provides simplified steps for the design and analysis of the
$RC$
snubber in various test benches, validated by experimental data. The 3L-NPC converter with the final
$RC$
snubber design achieved 99.2% efficiency and a 35 V turn-
off
voltage mismatch. The maximum error between the theoretical model and experimental data is 4.8%.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.