考虑优先客户和微电网的配电系统服务恢复

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Eduardo L. Campoverde, Santiago P. Torres, Danny Ochoa-Correa, Juan S. Giraldo
{"title":"考虑优先客户和微电网的配电系统服务恢复","authors":"Eduardo L. Campoverde, Santiago P. Torres, Danny Ochoa-Correa, Juan S. Giraldo","doi":"10.1016/j.epsr.2024.110988","DOIUrl":null,"url":null,"abstract":"Service restoration (SR) consists of automatically generating and executing a plan to restore the service in healthy zones using the least number of maneuvers after detecting and isolating a permanent fault in the distribution system zone. This component is essential to self-healing functionality in smart grids and allows customers to reconnect quickly to the distribution grid after a power outage. Distributed generation (DG) supports the distribution network when there is insufficient capacity to restore all zones out of service or supply the loads locally through microgrids. The power supply must be restored to the highest priority customers in case of partial restoration. Also, most research works use simplified or linearized models to propose restoration algorithms. This paper proposes a complete AC formulation for the service restoration problem in distribution systems considering network reconfiguration (NR), the integration of distributed generation (DG), and priority customers (PCs) into the solution. The optimization problem is solved by a centralized algorithm based on combining the Differential Evolution (DE) and Continuous Population-Based Incremental Learning (PBILc) metaheuristics techniques. Simulation results are presented for three case studies in which the IEEE 33-bus distribution system is tested for different fault scenarios. The numerical results show the robustness and efficiency of the proposed algorithm.","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Service restoration in distribution systems considering priority customers and microgrids\",\"authors\":\"Eduardo L. Campoverde, Santiago P. Torres, Danny Ochoa-Correa, Juan S. Giraldo\",\"doi\":\"10.1016/j.epsr.2024.110988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service restoration (SR) consists of automatically generating and executing a plan to restore the service in healthy zones using the least number of maneuvers after detecting and isolating a permanent fault in the distribution system zone. This component is essential to self-healing functionality in smart grids and allows customers to reconnect quickly to the distribution grid after a power outage. Distributed generation (DG) supports the distribution network when there is insufficient capacity to restore all zones out of service or supply the loads locally through microgrids. The power supply must be restored to the highest priority customers in case of partial restoration. Also, most research works use simplified or linearized models to propose restoration algorithms. This paper proposes a complete AC formulation for the service restoration problem in distribution systems considering network reconfiguration (NR), the integration of distributed generation (DG), and priority customers (PCs) into the solution. The optimization problem is solved by a centralized algorithm based on combining the Differential Evolution (DE) and Continuous Population-Based Incremental Learning (PBILc) metaheuristics techniques. Simulation results are presented for three case studies in which the IEEE 33-bus distribution system is tested for different fault scenarios. The numerical results show the robustness and efficiency of the proposed algorithm.\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.epsr.2024.110988\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.epsr.2024.110988","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

服务恢复(SR)包括自动生成和执行一个计划,在检测和隔离配电系统区域的永久性故障后,使用最少的操作恢复健康区域的服务。该组件对智能电网的自愈功能至关重要,可使客户在停电后快速重新连接到配电网。当没有足够能力恢复所有停电区域或通过微电网为本地负载供电时,分布式发电 (DG) 可为配电网提供支持。在部分恢复的情况下,必须恢复对最高优先级客户的供电。此外,大多数研究工作都使用简化或线性化模型来提出恢复算法。本文针对配电系统中的服务恢复问题提出了一个完整的交流模型,将网络重构 (NR)、分布式发电 (DG) 集成和优先客户 (PC) 纳入解决方案。该优化问题由一种基于微分进化(DE)和基于群体的连续增量学习(PBILc)元启发式技术的集中式算法解决。本文介绍了三个案例研究的仿真结果,其中对 IEEE 33 总线配电系统的不同故障场景进行了测试。数值结果表明了所提算法的鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Service restoration in distribution systems considering priority customers and microgrids
Service restoration (SR) consists of automatically generating and executing a plan to restore the service in healthy zones using the least number of maneuvers after detecting and isolating a permanent fault in the distribution system zone. This component is essential to self-healing functionality in smart grids and allows customers to reconnect quickly to the distribution grid after a power outage. Distributed generation (DG) supports the distribution network when there is insufficient capacity to restore all zones out of service or supply the loads locally through microgrids. The power supply must be restored to the highest priority customers in case of partial restoration. Also, most research works use simplified or linearized models to propose restoration algorithms. This paper proposes a complete AC formulation for the service restoration problem in distribution systems considering network reconfiguration (NR), the integration of distributed generation (DG), and priority customers (PCs) into the solution. The optimization problem is solved by a centralized algorithm based on combining the Differential Evolution (DE) and Continuous Population-Based Incremental Learning (PBILc) metaheuristics techniques. Simulation results are presented for three case studies in which the IEEE 33-bus distribution system is tested for different fault scenarios. The numerical results show the robustness and efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信