塞万湖盆地境内冬季最小河流流量的变化趋势

IF 0.6 Q4 ECOLOGY
V. G. Margaryan, E. V. Gaidukova, G. D. Avetisyan
{"title":"塞万湖盆地境内冬季最小河流流量的变化趋势","authors":"V. G. Margaryan,&nbsp;E. V. Gaidukova,&nbsp;G. D. Avetisyan","doi":"10.1134/S2079096124700215","DOIUrl":null,"url":null,"abstract":"<p>This work is devoted to assessing the features of the distribution of spatiotemporal changes in the characteristics of the minimum 30-day winter flow of rivers in the basin of Lake Sevan. The problem of spatiotemporal changes in the minimum river flow is especially relevant for regions with insufficient and unstable moisture, like the basin of Lake Sevan, most of which is located within the steppe zone. The purpose of this work is to summarize modern ideas about the impact of climate change on the characteristics of the minimum 30-day winter river flow based on the authors’ own research, to analyze and evaluate the spatiotemporal variability of long-term fluctuations, and to identify nonstationarity in the series of minimum winter flow. The characteristics of the minimum flow have been determined, their spatiotemporal changes have been studied, and the dates of violations of homogeneity in the series of long-term runoff observations have been discovered. Using statistical parameters and difference integral curves, we assessed the representativeness of time series of minimum 30-day winter water flows at 12 sites during the period of instrumental observations. Nonstationarity in the series of minimum winter runoff in the basin of Lake Sevan has been revealed, and the dates for changes in stationary regimes have been determined. For most of the watersheds analyzed, the changes are statistically significant. Maps of the date of violation of the stationarity of the series under consideration based on information up to 2021 are presented, including a map of the distribution of the module of the minimum 30-day runoff for the winter period and maps on the nature of changes in the minimum 30-day winter flow. It is shown that changes in the minimum 30-day winter flow have a multidirectional nature, but mainly for the minimum 30-day winter flow, on average, over the territory of the lake basin. In recent decades, Lake Sevan has shown an increasing trend associated with rising air and soil surface temperatures. For some of the watersheds analyzed, the changes are statistically insignificant. On the territory of the Vardenis, Lichk, and Bakhtak river basins, on average, the minimum 30-day winter flow decreases by 20–30%, which will lead to an increase in environmental risk, requiring the adoption of appropriate measures. The obtained statistical materials will serve as the basis for scientific generalizations of research on the territory under consideration and can also be used for practical purposes in hydraulic engineering design and assessment of natural hazards and in making appropriate preventive decisions.</p>","PeriodicalId":44316,"journal":{"name":"Arid Ecosystems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in the Minimum Winter River Flow on the Territory of the Basin of Lake Sevan\",\"authors\":\"V. G. Margaryan,&nbsp;E. V. Gaidukova,&nbsp;G. D. Avetisyan\",\"doi\":\"10.1134/S2079096124700215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work is devoted to assessing the features of the distribution of spatiotemporal changes in the characteristics of the minimum 30-day winter flow of rivers in the basin of Lake Sevan. The problem of spatiotemporal changes in the minimum river flow is especially relevant for regions with insufficient and unstable moisture, like the basin of Lake Sevan, most of which is located within the steppe zone. The purpose of this work is to summarize modern ideas about the impact of climate change on the characteristics of the minimum 30-day winter river flow based on the authors’ own research, to analyze and evaluate the spatiotemporal variability of long-term fluctuations, and to identify nonstationarity in the series of minimum winter flow. The characteristics of the minimum flow have been determined, their spatiotemporal changes have been studied, and the dates of violations of homogeneity in the series of long-term runoff observations have been discovered. Using statistical parameters and difference integral curves, we assessed the representativeness of time series of minimum 30-day winter water flows at 12 sites during the period of instrumental observations. Nonstationarity in the series of minimum winter runoff in the basin of Lake Sevan has been revealed, and the dates for changes in stationary regimes have been determined. For most of the watersheds analyzed, the changes are statistically significant. Maps of the date of violation of the stationarity of the series under consideration based on information up to 2021 are presented, including a map of the distribution of the module of the minimum 30-day runoff for the winter period and maps on the nature of changes in the minimum 30-day winter flow. It is shown that changes in the minimum 30-day winter flow have a multidirectional nature, but mainly for the minimum 30-day winter flow, on average, over the territory of the lake basin. In recent decades, Lake Sevan has shown an increasing trend associated with rising air and soil surface temperatures. For some of the watersheds analyzed, the changes are statistically insignificant. On the territory of the Vardenis, Lichk, and Bakhtak river basins, on average, the minimum 30-day winter flow decreases by 20–30%, which will lead to an increase in environmental risk, requiring the adoption of appropriate measures. The obtained statistical materials will serve as the basis for scientific generalizations of research on the territory under consideration and can also be used for practical purposes in hydraulic engineering design and assessment of natural hazards and in making appropriate preventive decisions.</p>\",\"PeriodicalId\":44316,\"journal\":{\"name\":\"Arid Ecosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arid Ecosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2079096124700215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arid Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2079096124700215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究旨在评估塞凡湖流域冬季 30 天最小河流流量时空变化的分布特征。河流最小流量的时空变化问题对于塞凡湖流域等水分不足和不稳定的地区尤为重要,因为塞凡湖流域大部分地区都位于草原地带。这项工作的目的是根据作者自己的研究,总结气候变化对 30 天冬季河流最小流量特征影响的现代观点,分析和评估长期波动的时空变异性,并确定冬季最小流量序列的非平稳性。确定了最小流量的特征,研究了它们的时空变化,并发现了长期径流观测序列中违反均匀性的日期。利用统计参数和差分积分曲线,我们评估了仪器观测期间 12 个站点的 30 天冬季最小水流量时间序列的代表性。揭示了塞凡湖流域冬季最小径流量时间序列的非静止性,并确定了静止制度变化的日期。在分析的大多数流域中,这些变化在统计学上具有重要意义。根据截至 2021 年的信息,绘制了所研究序列的静止性破坏日期图,包括冬季 30 天最小径流量模块分布图和冬季 30 天最小流量变化性质图。结果表明,冬季 30 天最小径流量的变化具有多向性,但主要是湖泊盆地境内冬季 30 天最小径流量的平均变化。近几十年来,随着空气和土壤表面温度的升高,塞凡湖的水位呈上升趋势。在分析的一些流域中,这些变化在统计上并不明显。在 Vardenis 河、Lichk 河和 Bakhtak 河流域境内,冬季 30 天的最小流量平均减少了 20-30%,这将导致环境风险增加,需要采取适当措施。所获得的统计资料将作为对所研究地区进行科学概括的基础,也可用于水利工程设计、 自然灾害评估和做出适当预防决定的实用目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Trends in the Minimum Winter River Flow on the Territory of the Basin of Lake Sevan

Trends in the Minimum Winter River Flow on the Territory of the Basin of Lake Sevan

Trends in the Minimum Winter River Flow on the Territory of the Basin of Lake Sevan

This work is devoted to assessing the features of the distribution of spatiotemporal changes in the characteristics of the minimum 30-day winter flow of rivers in the basin of Lake Sevan. The problem of spatiotemporal changes in the minimum river flow is especially relevant for regions with insufficient and unstable moisture, like the basin of Lake Sevan, most of which is located within the steppe zone. The purpose of this work is to summarize modern ideas about the impact of climate change on the characteristics of the minimum 30-day winter river flow based on the authors’ own research, to analyze and evaluate the spatiotemporal variability of long-term fluctuations, and to identify nonstationarity in the series of minimum winter flow. The characteristics of the minimum flow have been determined, their spatiotemporal changes have been studied, and the dates of violations of homogeneity in the series of long-term runoff observations have been discovered. Using statistical parameters and difference integral curves, we assessed the representativeness of time series of minimum 30-day winter water flows at 12 sites during the period of instrumental observations. Nonstationarity in the series of minimum winter runoff in the basin of Lake Sevan has been revealed, and the dates for changes in stationary regimes have been determined. For most of the watersheds analyzed, the changes are statistically significant. Maps of the date of violation of the stationarity of the series under consideration based on information up to 2021 are presented, including a map of the distribution of the module of the minimum 30-day runoff for the winter period and maps on the nature of changes in the minimum 30-day winter flow. It is shown that changes in the minimum 30-day winter flow have a multidirectional nature, but mainly for the minimum 30-day winter flow, on average, over the territory of the lake basin. In recent decades, Lake Sevan has shown an increasing trend associated with rising air and soil surface temperatures. For some of the watersheds analyzed, the changes are statistically insignificant. On the territory of the Vardenis, Lichk, and Bakhtak river basins, on average, the minimum 30-day winter flow decreases by 20–30%, which will lead to an increase in environmental risk, requiring the adoption of appropriate measures. The obtained statistical materials will serve as the basis for scientific generalizations of research on the territory under consideration and can also be used for practical purposes in hydraulic engineering design and assessment of natural hazards and in making appropriate preventive decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arid Ecosystems
Arid Ecosystems ECOLOGY-
CiteScore
1.50
自引率
25.00%
发文量
59
期刊介绍: Arid Ecosystems  publishes original scientific research articles on desert and semidesert ecosystems and environment:systematic studies of arid territories: climate changes, water supply of territories, soils as ecological factors of ecosystems state and dynamics in different scales (from local to global);systematic studies of arid ecosystems: composition and structure, diversity, ecology; paleohistory; dynamics under anthropogenic and natural factors impact, including climate changes; studying of bioresources and biodiversity, and development of the mapping methods;arid ecosystems protection: development of the theory and methods of degradation prevention and monitoring; desert ecosystems rehabilitation;problems of desertification: theoretical and practical issues of modern aridization processes under anthropogenic impact and global climate changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信