{"title":"优化铂纳米粒子和钴单原子之间的电子协同作用以加速电催化氢气转化活性","authors":"Ziqi Wang, Pengfei Zhang, Xiaohui Zhao, Yanhui Song, Haixia Zhang, Haojie Liang, Peizhi Liu, Bingshe Xu, Junjie Guo","doi":"10.1007/s10562-024-04802-y","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing the electronic structure of an electrocatalyst has been supposed to a valid approach to facilitate the hydrogen evolution reaction (HER) activity. Herein, a core–shell architecture comprising a Pt nanoparticle (NP) encapsulated into single-atomic Co species anchored on nickel iron double layered hydroxide substrate (PtCo–NiFe LDH) was established. The PtCo–NiFe LDH catalyst displays the remarkable electrocatalytic HER performance (29 mV@10 mA cm<sup>−2</sup>), better than the NiFe LDH (183 mV@10 mA cm<sup>−2</sup>) and commercial Pt/C (30 mV@10 mA cm<sup>−2</sup>). In addition, it also possesses excellent stability for up to 25 h, and the morphology and structure have hardly undergone any significant changes. It is supposed that the efficient electronic relation between Pt NP and atomically-distributed Co site on NiFe LDH could give rise to plentiful active sites and enhanced conductivity, and thus raise excellent catalytic properties. This work would improve the design and construction of efficient electrocatalysts for a sustainable green energy system.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>The acquired PtCo-NiFe LDH has been successfully prepared and used as HER electrocatalyst</p></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 12","pages":"6351 - 6358"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Electronic Synergy Between Pt Nanoparticle and Co Single Atom to Accelerate the Electrocatalytic Hydrogen Evolution Activity\",\"authors\":\"Ziqi Wang, Pengfei Zhang, Xiaohui Zhao, Yanhui Song, Haixia Zhang, Haojie Liang, Peizhi Liu, Bingshe Xu, Junjie Guo\",\"doi\":\"10.1007/s10562-024-04802-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing the electronic structure of an electrocatalyst has been supposed to a valid approach to facilitate the hydrogen evolution reaction (HER) activity. Herein, a core–shell architecture comprising a Pt nanoparticle (NP) encapsulated into single-atomic Co species anchored on nickel iron double layered hydroxide substrate (PtCo–NiFe LDH) was established. The PtCo–NiFe LDH catalyst displays the remarkable electrocatalytic HER performance (29 mV@10 mA cm<sup>−2</sup>), better than the NiFe LDH (183 mV@10 mA cm<sup>−2</sup>) and commercial Pt/C (30 mV@10 mA cm<sup>−2</sup>). In addition, it also possesses excellent stability for up to 25 h, and the morphology and structure have hardly undergone any significant changes. It is supposed that the efficient electronic relation between Pt NP and atomically-distributed Co site on NiFe LDH could give rise to plentiful active sites and enhanced conductivity, and thus raise excellent catalytic properties. This work would improve the design and construction of efficient electrocatalysts for a sustainable green energy system.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p>The acquired PtCo-NiFe LDH has been successfully prepared and used as HER electrocatalyst</p></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"154 12\",\"pages\":\"6351 - 6358\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04802-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04802-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
优化电催化剂的电子结构一直被认为是促进氢进化反应(HER)活性的有效方法。在此,我们建立了一种由铂纳米粒子(NP)和锚定在镍铁双层氢氧化物基底(PtCo-NiFe LDH)上的单原子 Co 组成的核壳结构。PtCo-NiFe LDH 催化剂具有显著的电催化 HER 性能(29 mV@10 mA cm-2),优于 NiFe LDH(183 mV@10 mA cm-2)和商用 Pt/C(30 mV@10 mA cm-2)。此外,它还具有长达 25 h 的优异稳定性,形态和结构几乎没有发生任何显著变化。据推测,镍铁合金 LDH 上铂 NP 与原子分布的 Co 位点之间的高效电子关系可产生丰富的活性位点和更高的电导率,从而提高催化性能。这项工作将改进高效电催化剂的设计和构建,从而实现可持续的绿色能源系统。
Optimizing Electronic Synergy Between Pt Nanoparticle and Co Single Atom to Accelerate the Electrocatalytic Hydrogen Evolution Activity
Optimizing the electronic structure of an electrocatalyst has been supposed to a valid approach to facilitate the hydrogen evolution reaction (HER) activity. Herein, a core–shell architecture comprising a Pt nanoparticle (NP) encapsulated into single-atomic Co species anchored on nickel iron double layered hydroxide substrate (PtCo–NiFe LDH) was established. The PtCo–NiFe LDH catalyst displays the remarkable electrocatalytic HER performance (29 mV@10 mA cm−2), better than the NiFe LDH (183 mV@10 mA cm−2) and commercial Pt/C (30 mV@10 mA cm−2). In addition, it also possesses excellent stability for up to 25 h, and the morphology and structure have hardly undergone any significant changes. It is supposed that the efficient electronic relation between Pt NP and atomically-distributed Co site on NiFe LDH could give rise to plentiful active sites and enhanced conductivity, and thus raise excellent catalytic properties. This work would improve the design and construction of efficient electrocatalysts for a sustainable green energy system.
Graphical Abstract
The acquired PtCo-NiFe LDH has been successfully prepared and used as HER electrocatalyst
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.