Qiong Wang, Kang Xiao, Haitao Li, Feng Lu, Quli Fan
{"title":"改进的两步共沉淀法可提供更好的 CuZnO/Al2O3 甲醇合成催化剂,且氧化铝分布更均匀","authors":"Qiong Wang, Kang Xiao, Haitao Li, Feng Lu, Quli Fan","doi":"10.1007/s10562-024-04796-7","DOIUrl":null,"url":null,"abstract":"<div><p>A modified two-step coprecipitation method has been formulated to prepare a series of model CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts for methanol synthesis from syngas. Evaluation at industrially relevant condition showed slightly higher activity and much higher stability for model catalysts than for a commercial catalyst. Due to the same CuZn-binary precursor, the model catalysts had similar structural properties with large specific surface area and pore volume, small CuO crystallites and good reducibility, resembling that of the commercial catalyst. However, the model catalysts showed much better uniformity of alumina distribution, which accounted for their better performance. Strong positive correlation between the deactivation rate and the coefficient of variation of Al/Zn indicates the uniformity of alumina distribution plays an important role in determining stability. Specifically, CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts with alumina distributed more uniformly had higher stability. This work demonstrated that the formulated modified two-step coprecipitation could provide excellent CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts for industrial applications. Additionally, it also affords new clues for the development of even better industrial catalysts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 11","pages":"6168 - 6179"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Two-Step Coprecipitation Method Provides Better CuZnO/Al2O3 Methanol Synthesis Catalyst with More Uniform Distribution of Alumina\",\"authors\":\"Qiong Wang, Kang Xiao, Haitao Li, Feng Lu, Quli Fan\",\"doi\":\"10.1007/s10562-024-04796-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A modified two-step coprecipitation method has been formulated to prepare a series of model CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts for methanol synthesis from syngas. Evaluation at industrially relevant condition showed slightly higher activity and much higher stability for model catalysts than for a commercial catalyst. Due to the same CuZn-binary precursor, the model catalysts had similar structural properties with large specific surface area and pore volume, small CuO crystallites and good reducibility, resembling that of the commercial catalyst. However, the model catalysts showed much better uniformity of alumina distribution, which accounted for their better performance. Strong positive correlation between the deactivation rate and the coefficient of variation of Al/Zn indicates the uniformity of alumina distribution plays an important role in determining stability. Specifically, CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts with alumina distributed more uniformly had higher stability. This work demonstrated that the formulated modified two-step coprecipitation could provide excellent CuZnO/Al<sub>2</sub>O<sub>3</sub> catalysts for industrial applications. Additionally, it also affords new clues for the development of even better industrial catalysts.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"154 11\",\"pages\":\"6168 - 6179\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04796-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04796-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Modified Two-Step Coprecipitation Method Provides Better CuZnO/Al2O3 Methanol Synthesis Catalyst with More Uniform Distribution of Alumina
A modified two-step coprecipitation method has been formulated to prepare a series of model CuZnO/Al2O3 catalysts for methanol synthesis from syngas. Evaluation at industrially relevant condition showed slightly higher activity and much higher stability for model catalysts than for a commercial catalyst. Due to the same CuZn-binary precursor, the model catalysts had similar structural properties with large specific surface area and pore volume, small CuO crystallites and good reducibility, resembling that of the commercial catalyst. However, the model catalysts showed much better uniformity of alumina distribution, which accounted for their better performance. Strong positive correlation between the deactivation rate and the coefficient of variation of Al/Zn indicates the uniformity of alumina distribution plays an important role in determining stability. Specifically, CuZnO/Al2O3 catalysts with alumina distributed more uniformly had higher stability. This work demonstrated that the formulated modified two-step coprecipitation could provide excellent CuZnO/Al2O3 catalysts for industrial applications. Additionally, it also affords new clues for the development of even better industrial catalysts.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.