{"title":"用于治疗复发性流产的荧光、pH 值和 UCST 响应聚合物纳米材料","authors":"Xuanping Lu, Weiqin Zhou, Caiping Mao","doi":"10.1007/s10895-024-03883-7","DOIUrl":null,"url":null,"abstract":"<p>Recurrent miscarriage (RM), defined as three or more consecutive spontaneous miscarriages, affects many women of childbearing age. The pathological basis of RM is an imbalance in apoptosis, with the MDM2-p53 pathway playing a crucial role. In this study, we synthesized poly(6-acetoxyl-ε-caprolactone)-graft-(4-amino-benzimidazole) (PCCL-4-ABI) by modifying poly(6-acetoxyl-ε-caprolactone) (PCCL) with 4-amino-benzimidazole (4-ABI). The introduction of carboxyl and 4-ABI groups endowed the PCL backbone with fluorescence, pH responsiveness, and UCST responsiveness. The temperature-dependent release behavior of compound 1-loaded PCCL-4-ABI nanofluorescent materials was attributed to UCST transition. We successfully developed a novel nanofluorescent polymer drug delivery platform, PCCL-4-ABI@1, and evaluated its regulatory effects on p53 and MDM2 in trophoblast cells (HTR-8/SVneo). The results showed that the system loaded with low molecular weight heparin increased MDM2 and decreased p53 expression in a dose-dependent manner, thereby inhibiting trophoblast cell apoptosis. This study developed a biodegradable poly(ε-caprolactone) with UCST behavior, significant for the advancement of thermoresponsive fluorescent nanoparticle systems.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent, pH, and UCST Responsive Polymer Nanomaterials for Treatment of Recurrent Miscarriage\",\"authors\":\"Xuanping Lu, Weiqin Zhou, Caiping Mao\",\"doi\":\"10.1007/s10895-024-03883-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recurrent miscarriage (RM), defined as three or more consecutive spontaneous miscarriages, affects many women of childbearing age. The pathological basis of RM is an imbalance in apoptosis, with the MDM2-p53 pathway playing a crucial role. In this study, we synthesized poly(6-acetoxyl-ε-caprolactone)-graft-(4-amino-benzimidazole) (PCCL-4-ABI) by modifying poly(6-acetoxyl-ε-caprolactone) (PCCL) with 4-amino-benzimidazole (4-ABI). The introduction of carboxyl and 4-ABI groups endowed the PCL backbone with fluorescence, pH responsiveness, and UCST responsiveness. The temperature-dependent release behavior of compound 1-loaded PCCL-4-ABI nanofluorescent materials was attributed to UCST transition. We successfully developed a novel nanofluorescent polymer drug delivery platform, PCCL-4-ABI@1, and evaluated its regulatory effects on p53 and MDM2 in trophoblast cells (HTR-8/SVneo). The results showed that the system loaded with low molecular weight heparin increased MDM2 and decreased p53 expression in a dose-dependent manner, thereby inhibiting trophoblast cell apoptosis. This study developed a biodegradable poly(ε-caprolactone) with UCST behavior, significant for the advancement of thermoresponsive fluorescent nanoparticle systems.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03883-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03883-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fluorescent, pH, and UCST Responsive Polymer Nanomaterials for Treatment of Recurrent Miscarriage
Recurrent miscarriage (RM), defined as three or more consecutive spontaneous miscarriages, affects many women of childbearing age. The pathological basis of RM is an imbalance in apoptosis, with the MDM2-p53 pathway playing a crucial role. In this study, we synthesized poly(6-acetoxyl-ε-caprolactone)-graft-(4-amino-benzimidazole) (PCCL-4-ABI) by modifying poly(6-acetoxyl-ε-caprolactone) (PCCL) with 4-amino-benzimidazole (4-ABI). The introduction of carboxyl and 4-ABI groups endowed the PCL backbone with fluorescence, pH responsiveness, and UCST responsiveness. The temperature-dependent release behavior of compound 1-loaded PCCL-4-ABI nanofluorescent materials was attributed to UCST transition. We successfully developed a novel nanofluorescent polymer drug delivery platform, PCCL-4-ABI@1, and evaluated its regulatory effects on p53 and MDM2 in trophoblast cells (HTR-8/SVneo). The results showed that the system loaded with low molecular weight heparin increased MDM2 and decreased p53 expression in a dose-dependent manner, thereby inhibiting trophoblast cell apoptosis. This study developed a biodegradable poly(ε-caprolactone) with UCST behavior, significant for the advancement of thermoresponsive fluorescent nanoparticle systems.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.