{"title":"拟南芥异源表达狐尾黍(Setaria italica)丝裂原活化蛋白激酶激酶(SiMKK)A组基因调控盐胁迫下的根系发育","authors":"Yaqiong Li, Kai Huang, Huazhuan He, Yuhuan Yang, Xiaoxia Meng, Guiyun Yan, Yaofei Zhao","doi":"10.1007/s10725-024-01180-8","DOIUrl":null,"url":null,"abstract":"<p>The MAPK cascade, evolutionarily conserved among eukaryotes, plays a crucial role in regulating plant growth, development, and resistance to both biotic and abiotic stresses. However, the gene function of MAPK cascade in foxtail millet (<i>Setaria italica</i>) is poorly studied. In this study, RNA sequencing revealed that the MAPK cascade is the primary enrichment pathway in foxtail millet under salt treatment. Meanwhile, fourteen genes encoding mitogen-activated protein kinase kinases (SiMKKs) were identified and could be categorized into four subfamilies. Under salt treatment, the expression of 11 <i>SiMKKs</i> was upregulated, with <i>SiMKK6-2</i> in group A showing the most significant increase. <i>SiMKK1</i> and <i>SiMKK6-1</i>, the other two members of the same subfamily, were also significantly upregulated under salt stress. Overexpression of these three genes in <i>Arabidopsis thaliana</i> reduced the sensitivity of roots to salt stress. The transgenic plants exhibited an increase in lateral roots. Under salt stress, the decrease in primary root length of transgenic plants was significantly less than that of wild-type plants. These three genes are involved in regulating the development of primary and lateral roots of plants, which can maintain better root development to improve plant tolerance to salt stress.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterologous expression of foxtail millet (Setaria italica) mitogen-activated protein kinase kinase (SiMKK) group A genes regulate root development under salt stress in Arabidopsis thaliana\",\"authors\":\"Yaqiong Li, Kai Huang, Huazhuan He, Yuhuan Yang, Xiaoxia Meng, Guiyun Yan, Yaofei Zhao\",\"doi\":\"10.1007/s10725-024-01180-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The MAPK cascade, evolutionarily conserved among eukaryotes, plays a crucial role in regulating plant growth, development, and resistance to both biotic and abiotic stresses. However, the gene function of MAPK cascade in foxtail millet (<i>Setaria italica</i>) is poorly studied. In this study, RNA sequencing revealed that the MAPK cascade is the primary enrichment pathway in foxtail millet under salt treatment. Meanwhile, fourteen genes encoding mitogen-activated protein kinase kinases (SiMKKs) were identified and could be categorized into four subfamilies. Under salt treatment, the expression of 11 <i>SiMKKs</i> was upregulated, with <i>SiMKK6-2</i> in group A showing the most significant increase. <i>SiMKK1</i> and <i>SiMKK6-1</i>, the other two members of the same subfamily, were also significantly upregulated under salt stress. Overexpression of these three genes in <i>Arabidopsis thaliana</i> reduced the sensitivity of roots to salt stress. The transgenic plants exhibited an increase in lateral roots. Under salt stress, the decrease in primary root length of transgenic plants was significantly less than that of wild-type plants. These three genes are involved in regulating the development of primary and lateral roots of plants, which can maintain better root development to improve plant tolerance to salt stress.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01180-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01180-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Heterologous expression of foxtail millet (Setaria italica) mitogen-activated protein kinase kinase (SiMKK) group A genes regulate root development under salt stress in Arabidopsis thaliana
The MAPK cascade, evolutionarily conserved among eukaryotes, plays a crucial role in regulating plant growth, development, and resistance to both biotic and abiotic stresses. However, the gene function of MAPK cascade in foxtail millet (Setaria italica) is poorly studied. In this study, RNA sequencing revealed that the MAPK cascade is the primary enrichment pathway in foxtail millet under salt treatment. Meanwhile, fourteen genes encoding mitogen-activated protein kinase kinases (SiMKKs) were identified and could be categorized into four subfamilies. Under salt treatment, the expression of 11 SiMKKs was upregulated, with SiMKK6-2 in group A showing the most significant increase. SiMKK1 and SiMKK6-1, the other two members of the same subfamily, were also significantly upregulated under salt stress. Overexpression of these three genes in Arabidopsis thaliana reduced the sensitivity of roots to salt stress. The transgenic plants exhibited an increase in lateral roots. Under salt stress, the decrease in primary root length of transgenic plants was significantly less than that of wild-type plants. These three genes are involved in regulating the development of primary and lateral roots of plants, which can maintain better root development to improve plant tolerance to salt stress.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.