双氮源 Fe-N-C 催化剂的氧还原反应性能

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Yuan Zhao, Quan Wang, Rongrong Hu, Wenqiang Liu, Xiaojuan Zhang, Wei Wang, Nicolas Alonso-Vante, Dongdong Zhu
{"title":"双氮源 Fe-N-C 催化剂的氧还原反应性能","authors":"Yuan Zhao,&nbsp;Quan Wang,&nbsp;Rongrong Hu,&nbsp;Wenqiang Liu,&nbsp;Xiaojuan Zhang,&nbsp;Wei Wang,&nbsp;Nicolas Alonso-Vante,&nbsp;Dongdong Zhu","doi":"10.1007/s11708-024-0956-2","DOIUrl":null,"url":null,"abstract":"<div><p>Fe-N-C catalysts are potential substitutes to displace electrocatalysts containing noble chemical elements in the oxygen reduction reaction (ORR). However, their application is hampered by unsatisfactory activity and stability issues. The structures and morphologies of Fe-N-C catalysts have been found to be crucial for the number of active sites and local bonding structures. In this work, dicyandiamide (DCDA) and polyaniline (PANI) are shown to act as dual nitrogen sources to tune the morphology and structure of the catalyst and facilitate the ORR process. The dual nitrogen sources not only increase the amount of nitrogen doping atoms in the electrocatalytic Fe-C-N material, but also maintain a high nitrogen-pyrrole/nitrogen-graphitic: (N-P)/(N-G) value, improving the distribution density of catalytic active sites in the material. With a high surface area and amount of N-doping, the Fe-N-C catalyst developed can achieve an improved half-wave potential of 0.886 V (vs. RHE) in alkaline medium, and a better stability and methanol resistance than commercial Pt/C catalyst.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 6","pages":"841 - 849"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source\",\"authors\":\"Yuan Zhao,&nbsp;Quan Wang,&nbsp;Rongrong Hu,&nbsp;Wenqiang Liu,&nbsp;Xiaojuan Zhang,&nbsp;Wei Wang,&nbsp;Nicolas Alonso-Vante,&nbsp;Dongdong Zhu\",\"doi\":\"10.1007/s11708-024-0956-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fe-N-C catalysts are potential substitutes to displace electrocatalysts containing noble chemical elements in the oxygen reduction reaction (ORR). However, their application is hampered by unsatisfactory activity and stability issues. The structures and morphologies of Fe-N-C catalysts have been found to be crucial for the number of active sites and local bonding structures. In this work, dicyandiamide (DCDA) and polyaniline (PANI) are shown to act as dual nitrogen sources to tune the morphology and structure of the catalyst and facilitate the ORR process. The dual nitrogen sources not only increase the amount of nitrogen doping atoms in the electrocatalytic Fe-C-N material, but also maintain a high nitrogen-pyrrole/nitrogen-graphitic: (N-P)/(N-G) value, improving the distribution density of catalytic active sites in the material. With a high surface area and amount of N-doping, the Fe-N-C catalyst developed can achieve an improved half-wave potential of 0.886 V (vs. RHE) in alkaline medium, and a better stability and methanol resistance than commercial Pt/C catalyst.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"18 6\",\"pages\":\"841 - 849\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0956-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0956-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在氧还原反应(ORR)中,Fe-N-C 催化剂有可能取代含有惰性化学元素的电催化剂。然而,它们的应用却因活性不理想和稳定性问题而受到阻碍。研究发现,Fe-N-C 催化剂的结构和形态对活性位点的数量和局部键合结构至关重要。在这项研究中,双氰胺(DCDA)和聚苯胺(PANI)被证明可作为双重氮源来调整催化剂的形态和结构,并促进 ORR 过程。双氮源不仅增加了电催化 Fe-C-N 材料中的氮掺杂原子数,还保持了较高的氮-吡咯/氮-石墨化:(N-P)/(N-G)值,提高了材料中催化活性位点的分布密度。在高比表面积和高掺氮量的条件下,所开发的 Fe-N-C 催化剂在碱性介质中的半波电位可提高到 0.886 V(相对于 RHE),其稳定性和耐甲醇性也优于商用 Pt/C 催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source

Fe-N-C catalysts are potential substitutes to displace electrocatalysts containing noble chemical elements in the oxygen reduction reaction (ORR). However, their application is hampered by unsatisfactory activity and stability issues. The structures and morphologies of Fe-N-C catalysts have been found to be crucial for the number of active sites and local bonding structures. In this work, dicyandiamide (DCDA) and polyaniline (PANI) are shown to act as dual nitrogen sources to tune the morphology and structure of the catalyst and facilitate the ORR process. The dual nitrogen sources not only increase the amount of nitrogen doping atoms in the electrocatalytic Fe-C-N material, but also maintain a high nitrogen-pyrrole/nitrogen-graphitic: (N-P)/(N-G) value, improving the distribution density of catalytic active sites in the material. With a high surface area and amount of N-doping, the Fe-N-C catalyst developed can achieve an improved half-wave potential of 0.886 V (vs. RHE) in alkaline medium, and a better stability and methanol resistance than commercial Pt/C catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信