三明治 MRE 谐振器建模与超材料光束带隙调整

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihong Gao, Xueyi Zhang, Yu Xue, Jinhui Liu, Jinqiang Li, Zhiguang Song
{"title":"三明治 MRE 谐振器建模与超材料光束带隙调整","authors":"Zhihong Gao, Xueyi Zhang, Yu Xue, Jinhui Liu, Jinqiang Li, Zhiguang Song","doi":"10.1007/s10338-024-00500-9","DOIUrl":null,"url":null,"abstract":"<p>A model of a sandwich magnetorheological elastomer (MRE) beam with a concentrated mass attached to one end is proposed to analyze the resonance characteristics of the cantilever beam-mass resonator. This model of sandwich MRE resonator consists of two types of components: the beam element with two nodes and four degrees of freedom and the beam element with concentrated mass. The effectiveness of this model is verified by comparing its results with existing results and finite element results. Through integrating the metamaterial beam with MRE resonators, a band-gap-adjustable metamaterial beam is proposed and low-frequency vibration suppression is achieved. The results suggest that the band gap of the structure can be effectively adjusted within a wide range by changing the external magnetic field applied to the presented MRE resonators.</p>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Sandwich MRE Resonator and Band Gap Adjustment of Metamaterial Beam\",\"authors\":\"Zhihong Gao, Xueyi Zhang, Yu Xue, Jinhui Liu, Jinqiang Li, Zhiguang Song\",\"doi\":\"10.1007/s10338-024-00500-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A model of a sandwich magnetorheological elastomer (MRE) beam with a concentrated mass attached to one end is proposed to analyze the resonance characteristics of the cantilever beam-mass resonator. This model of sandwich MRE resonator consists of two types of components: the beam element with two nodes and four degrees of freedom and the beam element with concentrated mass. The effectiveness of this model is verified by comparing its results with existing results and finite element results. Through integrating the metamaterial beam with MRE resonators, a band-gap-adjustable metamaterial beam is proposed and low-frequency vibration suppression is achieved. The results suggest that the band gap of the structure can be effectively adjusted within a wide range by changing the external magnetic field applied to the presented MRE resonators.</p>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10338-024-00500-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00500-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为分析悬臂梁-质量谐振器的共振特性,我们提出了一种一端附有集中质量的夹层磁流变弹性体(MRE)梁模型。这种夹层 MRE 谐振器模型由两类元件组成:具有两个节点和四个自由度的梁元件以及具有集中质量的梁元件。通过将其结果与现有结果和有限元结果进行比较,验证了该模型的有效性。通过将超材料梁与 MRE 谐振器集成,提出了一种带隙可调的超材料梁,并实现了低频振动抑制。研究结果表明,通过改变施加在所提出的 MRE 谐振器上的外部磁场,可以在很大范围内有效调节该结构的带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling of Sandwich MRE Resonator and Band Gap Adjustment of Metamaterial Beam

Modeling of Sandwich MRE Resonator and Band Gap Adjustment of Metamaterial Beam

A model of a sandwich magnetorheological elastomer (MRE) beam with a concentrated mass attached to one end is proposed to analyze the resonance characteristics of the cantilever beam-mass resonator. This model of sandwich MRE resonator consists of two types of components: the beam element with two nodes and four degrees of freedom and the beam element with concentrated mass. The effectiveness of this model is verified by comparing its results with existing results and finite element results. Through integrating the metamaterial beam with MRE resonators, a band-gap-adjustable metamaterial beam is proposed and low-frequency vibration suppression is achieved. The results suggest that the band gap of the structure can be effectively adjusted within a wide range by changing the external magnetic field applied to the presented MRE resonators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信