{"title":"源自 -Fe2O3/g-C3N4/Fe-MOF 的三元三维/二维/三维直接双 Z 型 MOF-on-MOF 光催化剂,用于促进阳光驱动的甲硝唑去除:共存离子、机理认识和水基质的影响","authors":"Anindita Bhuyan and Md. Ahmaruzzaman","doi":"10.1039/D4EN00610K","DOIUrl":null,"url":null,"abstract":"<p >A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5% of 25 mg L<small><sup>−1</sup></small> MTZ was effectively degraded with a catalyst dosage of 20 mg per 50 mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5% was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron–hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na<small><sup>+</sup></small>, Mg<small><sup>2+</sup></small>, Ca<small><sup>2+</sup></small>, and Al<small><sup>3+</sup></small>), inorganic anions (Cl<small><sup>−</sup></small>, CO<small><sub>3</sub></small><small><sup>2−</sup></small>, NO<small><sub>3</sub></small><small><sup>−</sup></small>, and SO<small><sub>4</sub></small><small><sup>2−</sup></small>), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers as well as the formation of ROS at the heterojunction interface is critical for understanding the photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 12","pages":" 4805-4829"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived α-Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: effect of coexisting ions, mechanistic insights, and water matrices\",\"authors\":\"Anindita Bhuyan and Md. Ahmaruzzaman\",\"doi\":\"10.1039/D4EN00610K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5% of 25 mg L<small><sup>−1</sup></small> MTZ was effectively degraded with a catalyst dosage of 20 mg per 50 mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5% was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron–hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na<small><sup>+</sup></small>, Mg<small><sup>2+</sup></small>, Ca<small><sup>2+</sup></small>, and Al<small><sup>3+</sup></small>), inorganic anions (Cl<small><sup>−</sup></small>, CO<small><sub>3</sub></small><small><sup>2−</sup></small>, NO<small><sub>3</sub></small><small><sup>−</sup></small>, and SO<small><sub>4</sub></small><small><sup>2−</sup></small>), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers as well as the formation of ROS at the heterojunction interface is critical for understanding the photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.</p>\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\" 12\",\"pages\":\" 4805-4829\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00610k\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00610k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ternary 3D/2D/3D direct dual Z-scheme MOF-on-MOF-derived α-Fe2O3/g-C3N4/Fe-MOF photocatalyst for boosted sunlight-driven removal of metronidazole: effect of coexisting ions, mechanistic insights, and water matrices
A direct solid ternary dual Z-scheme photocatalyst, 3D/2D/3D α-Fe2O3/g-C3N4/Fe-MOF (FCM), was fabricated for efficient removal of metronidazole (MTZ) under sunlight irradiation. About 98.5% of 25 mg L−1 MTZ was effectively degraded with a catalyst dosage of 20 mg per 50 mL under 90 min of sunlight irradiation. Moreover, a total organic carbon (TOC) removal of 78.5% was achieved within the same duration under optimal conditions. The simultaneous transfer of photogenerated electron–hole pairs in the two Z-scheme pathways described here can significantly accelerate the charge separation and enhance ROS production. The effect of catalyst dose, initial MTZ concentration, inorganic cations (Na+, Mg2+, Ca2+, and Al3+), inorganic anions (Cl−, CO32−, NO3−, and SO42−), organic compounds (SDS, urea, HA, and acetone), and different water matrices on the degradation of MTZ by FCM was analyzed systematically. Furthermore, comprehending the spatial separation and transfer of photogenerated charge carriers as well as the formation of ROS at the heterojunction interface is critical for understanding the photocatalytic degradation mechanisms. Consequently, a plausible MTZ breakdown route and charge transfer pathway were established based on the radical scavenging experiments, ESR and LCMS analysis. A high degradation efficiency of the dual Z-scheme MOF-on-MOF-derived 3D/2D/3D α-Fe2O3/g-C3N4/Fe-MOF photocatalyst under all simulated experiments and different water matrices highlights its excellent photoactivity and establishes its potential use in visible-light-driven photocatalytic application in wastewater remediation.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis