{"title":"RNA 螺旋酶 Brr2a 通过适当重塑 pri-miRNA 的二级结构促进 miRNA 的生物发生","authors":"Xindi Li, Songxiao Zhong, Changhao Li, Xingxing Yan, Jiaying Zhu, Yanjun Li, Zhiye Wang, Xu Peng, Xiuren Zhang","doi":"10.1038/s41477-024-01788-8","DOIUrl":null,"url":null,"abstract":"RNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs. Brr2a binds to pri-miRNAs in vivo and in vitro. Furthermore, Brr2a hydrolyses ATP and the activity can be significantly enhanced by pri-miRNAs. Consequently, Brr2a unwinds pri-miRNAs in vitro. Moreover, Brr2a variants with compromised ATPase or RH activity are incapable of unwinding pri-miRNA, and their transgenic plants fail to restore miRNA levels in brr2a-2. Importantly, most of tested pri-miRNAs display distinct RSS, rendering them unsuitable for efficient processing in brr2a mutants vs Col-0. Collectively, this study reveals that Brr2a plays a non-canonical role in miRNA production beyond splicing regulation. RNA secondary structure is a new regulatory layer of transcript fates. Here, Li et al. find that plant RNA helicase Brr2a, acting beyond its canonical role in spliceosome, can optimize secondary structure of pri-miRNAs to promote miRNA production.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 10","pages":"1532-1547"},"PeriodicalIF":15.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA helicase Brr2a promotes miRNA biogenesis by properly remodelling secondary structure of pri-miRNAs\",\"authors\":\"Xindi Li, Songxiao Zhong, Changhao Li, Xingxing Yan, Jiaying Zhu, Yanjun Li, Zhiye Wang, Xu Peng, Xiuren Zhang\",\"doi\":\"10.1038/s41477-024-01788-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs. Brr2a binds to pri-miRNAs in vivo and in vitro. Furthermore, Brr2a hydrolyses ATP and the activity can be significantly enhanced by pri-miRNAs. Consequently, Brr2a unwinds pri-miRNAs in vitro. Moreover, Brr2a variants with compromised ATPase or RH activity are incapable of unwinding pri-miRNA, and their transgenic plants fail to restore miRNA levels in brr2a-2. Importantly, most of tested pri-miRNAs display distinct RSS, rendering them unsuitable for efficient processing in brr2a mutants vs Col-0. Collectively, this study reveals that Brr2a plays a non-canonical role in miRNA production beyond splicing regulation. RNA secondary structure is a new regulatory layer of transcript fates. Here, Li et al. find that plant RNA helicase Brr2a, acting beyond its canonical role in spliceosome, can optimize secondary structure of pri-miRNAs to promote miRNA production.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"10 10\",\"pages\":\"1532-1547\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01788-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01788-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
RNA helicase Brr2a promotes miRNA biogenesis by properly remodelling secondary structure of pri-miRNAs
RNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs. Brr2a binds to pri-miRNAs in vivo and in vitro. Furthermore, Brr2a hydrolyses ATP and the activity can be significantly enhanced by pri-miRNAs. Consequently, Brr2a unwinds pri-miRNAs in vitro. Moreover, Brr2a variants with compromised ATPase or RH activity are incapable of unwinding pri-miRNA, and their transgenic plants fail to restore miRNA levels in brr2a-2. Importantly, most of tested pri-miRNAs display distinct RSS, rendering them unsuitable for efficient processing in brr2a mutants vs Col-0. Collectively, this study reveals that Brr2a plays a non-canonical role in miRNA production beyond splicing regulation. RNA secondary structure is a new regulatory layer of transcript fates. Here, Li et al. find that plant RNA helicase Brr2a, acting beyond its canonical role in spliceosome, can optimize secondary structure of pri-miRNAs to promote miRNA production.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.