Borna Pielić, Matko Mužević, Dino Novko, Jiaqi Cai, Alice Bremerich, Robin Ohmann, Marko Kralj, Iva Šrut Rakić, Carsten Busse
{"title":"通过自插入探测单层 MoS2 中相互作用、筛选和应变的相互作用","authors":"Borna Pielić, Matko Mužević, Dino Novko, Jiaqi Cai, Alice Bremerich, Robin Ohmann, Marko Kralj, Iva Šrut Rakić, Carsten Busse","doi":"10.1038/s41699-024-00488-3","DOIUrl":null,"url":null,"abstract":"Controlling many-body interactions in two-dimensional systems remains a formidable task from the perspective of both fundamental physics and application. Here, we explore remarkable electronic structure alterations of MoS2 monolayer islands on graphene on Ir(111) induced by non-invasive self-intercalation. This introduces significant differences in morphology and strain of MoS2 as a result of the modified interaction with the substrate. Consequently, considerable changes of the band gap and non-rigid electronic shifts of valleys are detected, which are a combined effect of the screening of the many-body interactions and strain in MoS2. Furthermore, theory shows that each substrate leaves a unique stamp on the electronic structure of two-dimensional material in terms of those two parameters, restricted by their correlation.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00488-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Probing the interplay of interactions, screening and strain in monolayer MoS2 via self-intercalation\",\"authors\":\"Borna Pielić, Matko Mužević, Dino Novko, Jiaqi Cai, Alice Bremerich, Robin Ohmann, Marko Kralj, Iva Šrut Rakić, Carsten Busse\",\"doi\":\"10.1038/s41699-024-00488-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling many-body interactions in two-dimensional systems remains a formidable task from the perspective of both fundamental physics and application. Here, we explore remarkable electronic structure alterations of MoS2 monolayer islands on graphene on Ir(111) induced by non-invasive self-intercalation. This introduces significant differences in morphology and strain of MoS2 as a result of the modified interaction with the substrate. Consequently, considerable changes of the band gap and non-rigid electronic shifts of valleys are detected, which are a combined effect of the screening of the many-body interactions and strain in MoS2. Furthermore, theory shows that each substrate leaves a unique stamp on the electronic structure of two-dimensional material in terms of those two parameters, restricted by their correlation.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-024-00488-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-024-00488-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00488-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing the interplay of interactions, screening and strain in monolayer MoS2 via self-intercalation
Controlling many-body interactions in two-dimensional systems remains a formidable task from the perspective of both fundamental physics and application. Here, we explore remarkable electronic structure alterations of MoS2 monolayer islands on graphene on Ir(111) induced by non-invasive self-intercalation. This introduces significant differences in morphology and strain of MoS2 as a result of the modified interaction with the substrate. Consequently, considerable changes of the band gap and non-rigid electronic shifts of valleys are detected, which are a combined effect of the screening of the many-body interactions and strain in MoS2. Furthermore, theory shows that each substrate leaves a unique stamp on the electronic structure of two-dimensional material in terms of those two parameters, restricted by their correlation.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.