基于相变材料和太阳能的创新型储能系统,与空气处理装置集成以产生暖气和冷气

Energy Storage Pub Date : 2024-09-12 DOI:10.1002/est2.70031
Seyyed Amirreza Abdollahi, Saman Faramarzi, Seyyed Faramarz Ranjbar, Kazem Hashemi, Hamid Majidi, Ehsan Gholamian
{"title":"基于相变材料和太阳能的创新型储能系统,与空气处理装置集成以产生暖气和冷气","authors":"Seyyed Amirreza Abdollahi,&nbsp;Saman Faramarzi,&nbsp;Seyyed Faramarz Ranjbar,&nbsp;Kazem Hashemi,&nbsp;Hamid Majidi,&nbsp;Ehsan Gholamian","doi":"10.1002/est2.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the potential of using phase change material (PCM) in a building using an air handling unit (AHU) assisted by solar energy. To further enhance the system, an energy storage system (ESS) can be considered. Implementing ESS would allow the captured solar energy to be stored efficiently, ensuring a continuous and reliable power source for cooling or heating the air, even during non-sunlight hours. The air-conditioned zone is considered to be 220 m<sup>2</sup> in which 30 people work for 12 h a day. An energy analysis is conducted to evaluate the performance of the proposed system in terms of energy and exergy loss. The genetic algorithm (GA) method is used to optimize the system. The results indicate that the system, including PCM and solar system, can reduce energy consumption by up to 8.9% compared to conventional AHUs in the hottest month of the year (July). The results indicated that employing PCM leads to a decrease of 124 kWh in heat loss during January and 229 kWh in heat gain during July. Taking into account the beneficial impacts of both PCM and the solar system, the yearly assessment demonstrates a 2.69% reduction in power demand, equating to an energy saving of 679 kWh. Furthermore, PCM in the proposed system can be used in integration with AHUs based on renewable energy systems to store renewable energy for buildings.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling\",\"authors\":\"Seyyed Amirreza Abdollahi,&nbsp;Saman Faramarzi,&nbsp;Seyyed Faramarz Ranjbar,&nbsp;Kazem Hashemi,&nbsp;Hamid Majidi,&nbsp;Ehsan Gholamian\",\"doi\":\"10.1002/est2.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study investigates the potential of using phase change material (PCM) in a building using an air handling unit (AHU) assisted by solar energy. To further enhance the system, an energy storage system (ESS) can be considered. Implementing ESS would allow the captured solar energy to be stored efficiently, ensuring a continuous and reliable power source for cooling or heating the air, even during non-sunlight hours. The air-conditioned zone is considered to be 220 m<sup>2</sup> in which 30 people work for 12 h a day. An energy analysis is conducted to evaluate the performance of the proposed system in terms of energy and exergy loss. The genetic algorithm (GA) method is used to optimize the system. The results indicate that the system, including PCM and solar system, can reduce energy consumption by up to 8.9% compared to conventional AHUs in the hottest month of the year (July). The results indicated that employing PCM leads to a decrease of 124 kWh in heat loss during January and 229 kWh in heat gain during July. Taking into account the beneficial impacts of both PCM and the solar system, the yearly assessment demonstrates a 2.69% reduction in power demand, equating to an energy saving of 679 kWh. Furthermore, PCM in the proposed system can be used in integration with AHUs based on renewable energy systems to store renewable energy for buildings.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在太阳能辅助下在建筑物空气处理装置(AHU)中使用相变材料(PCM)的潜力。为了进一步增强该系统,可以考虑采用储能系统(ESS)。采用储能系统可以有效地储存捕获的太阳能,确保即使在非日照时间也能为空气冷却或加热提供持续可靠的动力源。空调区面积为 220 平方米,30 人每天工作 12 小时。我们进行了能源分析,以评估拟议系统在能源和放能损失方面的性能。采用遗传算法(GA)对系统进行优化。结果表明,在一年中最热的月份(7 月),包括 PCM 和太阳能系统在内的该系统比传统空调机组最多可减少 8.9% 的能耗。结果表明,采用 PCM 后,1 月份的热量损失减少了 124 千瓦时,7 月份的热量增加了 229 千瓦时。考虑到 PCM 和太阳能系统的有利影响,年度评估显示电力需求减少了 2.69%,相当于节省了 679 千瓦时的能源。此外,拟议系统中的 PCM 可与基于可再生能源系统的自动空调机组结合使用,为建筑物储存可再生能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling

This study investigates the potential of using phase change material (PCM) in a building using an air handling unit (AHU) assisted by solar energy. To further enhance the system, an energy storage system (ESS) can be considered. Implementing ESS would allow the captured solar energy to be stored efficiently, ensuring a continuous and reliable power source for cooling or heating the air, even during non-sunlight hours. The air-conditioned zone is considered to be 220 m2 in which 30 people work for 12 h a day. An energy analysis is conducted to evaluate the performance of the proposed system in terms of energy and exergy loss. The genetic algorithm (GA) method is used to optimize the system. The results indicate that the system, including PCM and solar system, can reduce energy consumption by up to 8.9% compared to conventional AHUs in the hottest month of the year (July). The results indicated that employing PCM leads to a decrease of 124 kWh in heat loss during January and 229 kWh in heat gain during July. Taking into account the beneficial impacts of both PCM and the solar system, the yearly assessment demonstrates a 2.69% reduction in power demand, equating to an energy saving of 679 kWh. Furthermore, PCM in the proposed system can be used in integration with AHUs based on renewable energy systems to store renewable energy for buildings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信