Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad A. Altamimi, Usama Ahmad
{"title":"不同温度下醋氯芬酸在不同{卡必醇+水}混合物中的溶解度和热力学分析","authors":"Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad A. Altamimi, Usama Ahmad","doi":"10.1186/s13065-024-01287-z","DOIUrl":null,"url":null,"abstract":"<div><p>The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including “van’t Hoff, Apelblat, Buchowski-Ksiazczak <i>λh</i>, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10<sup>− 6</sup> at 298.2 K), and highest in pure Carbitol (1.04 × 10<sup>− 1</sup> at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be “endothermic and entropy-driven” in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01287-z","citationCount":"0","resultStr":"{\"title\":\"Solubility and thermodynamic analysis of aceclofenac in different {Carbitol + water} mixtures at various temperatures\",\"authors\":\"Faiyaz Shakeel, Ramadan Al-Shdefat, Mohammad A. Altamimi, Usama Ahmad\",\"doi\":\"10.1186/s13065-024-01287-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including “van’t Hoff, Apelblat, Buchowski-Ksiazczak <i>λh</i>, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10<sup>− 6</sup> at 298.2 K), and highest in pure Carbitol (1.04 × 10<sup>− 1</sup> at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be “endothermic and entropy-driven” in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01287-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-024-01287-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01287-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solubility and thermodynamic analysis of aceclofenac in different {Carbitol + water} mixtures at various temperatures
The solubility and thermodynamic properties of the anti-inflammatory drug aceclofenace (ACF) have been assessed in a range of {2-(2-ethoxyethoxy)ethanol (Carbitol) + water} combinations at temperatures ranging from 298.2 K to 318.2 K and atmospheric pressure of 101.1 kPa. The shake flask method was employed to determine the solubility of ACF, and various models including “van’t Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van’t Hoff models” were used to validate the results. The computational models demonstrated a strong correlation with the experimental ACF solubility data, as indicated by the error values of < 3.0%. In the compositions of {Carbitol + water}, the ACF mole fraction solubility was enhanced by temperature and Carbitol mass fraction. The solubility of ACF in mole fraction was found to be lowest in pure water (1.07 × 10− 6 at 298.2 K), and highest in pure Carbitol (1.04 × 10− 1 at 318.2 K). Based on the positive values of the calculated thermodynamic parameters, the dissolution of ACF was determined to be “endothermic and entropy-driven” in all of the {Carbitol + water} solutions that were studied. It was also observed that enthalpy controls the solvation of ACF in solutions containing {Carbitol + water}. ACF-Carbitol had the strongest molecular interactions in contrast to ACF-water. Based on the results of this study, Carbitol holds significant potential for enhancing the solubility of ACF in water.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.