基于磁轭型弹性磁传感器数据的 GRU 算法估算受拉构件的拉力

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ho-Jun Lee;Sae-Byeok Kyung;Sung-Won Kim;Eun-Yul Lee;Ju-Won Kim
{"title":"基于磁轭型弹性磁传感器数据的 GRU 算法估算受拉构件的拉力","authors":"Ho-Jun Lee;Sae-Byeok Kyung;Sung-Won Kim;Eun-Yul Lee;Ju-Won Kim","doi":"10.1109/LSENS.2024.3451405","DOIUrl":null,"url":null,"abstract":"This letter proposes a method to the estimation of tension force in tension members using the grated recurrent unit (GRU) algorithm. In this letter, a yoke-type elasto-magnetic (E/M) sensor was developed based on numerical ANSYS Maxwell simulations to enhance the applicability through the structural improvement of the existing solenoid-type magnetized E/M sensor. The induced voltage signal collected based on the yoke-type E/M sensor was applied to the GRU algorithm. As a result of applying the GRU model to the induced voltage signal data according to the change in tension force of the yoke-type E/M sensor, it was proven that high-accuracy tension force estimation is possible. These results suggest new possibilities for structural health monitoring technology through nondestructive testing. This study presents the applicability of artificial-intelligence-based techniques in nondestructive measurements of tension members for the health monitoring of structures.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Tension Force in Tension Members Using GRU Algorithm Based on Yoke-Type Elasto-Magnetic Sensor Data\",\"authors\":\"Ho-Jun Lee;Sae-Byeok Kyung;Sung-Won Kim;Eun-Yul Lee;Ju-Won Kim\",\"doi\":\"10.1109/LSENS.2024.3451405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a method to the estimation of tension force in tension members using the grated recurrent unit (GRU) algorithm. In this letter, a yoke-type elasto-magnetic (E/M) sensor was developed based on numerical ANSYS Maxwell simulations to enhance the applicability through the structural improvement of the existing solenoid-type magnetized E/M sensor. The induced voltage signal collected based on the yoke-type E/M sensor was applied to the GRU algorithm. As a result of applying the GRU model to the induced voltage signal data according to the change in tension force of the yoke-type E/M sensor, it was proven that high-accuracy tension force estimation is possible. These results suggest new possibilities for structural health monitoring technology through nondestructive testing. This study presents the applicability of artificial-intelligence-based techniques in nondestructive measurements of tension members for the health monitoring of structures.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659109/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659109/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用格栅递归单元(GRU)算法估算拉伸构件拉力的方法。本文在 ANSYS Maxwell 数值模拟的基础上开发了一种轭型弹性磁(E/M)传感器,通过对现有电磁铁型磁化 E/M 传感器的结构改进来提高其适用性。基于磁轭型 E/M 传感器采集的感应电压信号被应用于 GRU 算法。根据轭型 E/M 传感器张力的变化,将 GRU 模型应用于感应电压信号数据,结果证明可以进行高精度的张力估算。这些结果为通过无损检测进行结构健康监测技术提供了新的可能性。本研究介绍了基于人工智能的拉力构件无损测量技术在结构健康监测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Tension Force in Tension Members Using GRU Algorithm Based on Yoke-Type Elasto-Magnetic Sensor Data
This letter proposes a method to the estimation of tension force in tension members using the grated recurrent unit (GRU) algorithm. In this letter, a yoke-type elasto-magnetic (E/M) sensor was developed based on numerical ANSYS Maxwell simulations to enhance the applicability through the structural improvement of the existing solenoid-type magnetized E/M sensor. The induced voltage signal collected based on the yoke-type E/M sensor was applied to the GRU algorithm. As a result of applying the GRU model to the induced voltage signal data according to the change in tension force of the yoke-type E/M sensor, it was proven that high-accuracy tension force estimation is possible. These results suggest new possibilities for structural health monitoring technology through nondestructive testing. This study presents the applicability of artificial-intelligence-based techniques in nondestructive measurements of tension members for the health monitoring of structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信