描述符系统的模型预测控制

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Komeil Nosrati;Juri Belikov;Aleksei Tepljakov;Eduard Petlenkov
{"title":"描述符系统的模型预测控制","authors":"Komeil Nosrati;Juri Belikov;Aleksei Tepljakov;Eduard Petlenkov","doi":"10.1109/LCSYS.2024.3448310","DOIUrl":null,"url":null,"abstract":"While model predictive control (MPC) is widely used in the process industry for its ability to handle constraints and address complex dynamics, its conventional formulations often encounter challenges when dealing with descriptor systems. These formulations rely on system transformations that are applicable only to regular systems in specific scenarios, along with additional index assumptions. This letter formulates the MPC problem of discrete-time linear descriptor systems directly in their original state-space representation. Using the penalized weighted least-squares approach, we derive a quadratic cost function subject to the descriptor system over a finite prediction horizon. Through backward dynamic programming within each horizon, we then solve the constrained optimization problem to construct control inputs for forward-shifted prediction horizons. To accomplish this, we deal with the convergence and stability analysis of the proposed algorithm. Numerical simulations demonstrate its effectiveness compared to traditional techniques, alleviating the need for regularity and index assumptions.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Control of Descriptor Systems\",\"authors\":\"Komeil Nosrati;Juri Belikov;Aleksei Tepljakov;Eduard Petlenkov\",\"doi\":\"10.1109/LCSYS.2024.3448310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While model predictive control (MPC) is widely used in the process industry for its ability to handle constraints and address complex dynamics, its conventional formulations often encounter challenges when dealing with descriptor systems. These formulations rely on system transformations that are applicable only to regular systems in specific scenarios, along with additional index assumptions. This letter formulates the MPC problem of discrete-time linear descriptor systems directly in their original state-space representation. Using the penalized weighted least-squares approach, we derive a quadratic cost function subject to the descriptor system over a finite prediction horizon. Through backward dynamic programming within each horizon, we then solve the constrained optimization problem to construct control inputs for forward-shifted prediction horizons. To accomplish this, we deal with the convergence and stability analysis of the proposed algorithm. Numerical simulations demonstrate its effectiveness compared to traditional techniques, alleviating the need for regularity and index assumptions.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643558/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643558/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

虽然模型预测控制(MPC)因其处理约束条件和复杂动态的能力而被广泛应用于流程工业,但其传统公式在处理描述符系统时往往会遇到挑战。这些公式依赖于仅适用于特定情况下常规系统的系统变换,以及额外的指标假设。这封信将离散时间线性描述符系统的 MPC 问题直接表述为其原始状态空间表示。通过使用惩罚性加权最小二乘法,我们得出了描述符系统在有限预测范围内的二次成本函数。然后,我们通过在每个范围内进行后向动态编程,解决约束优化问题,为前移预测范围构建控制输入。为了实现这一目标,我们对所提出的算法进行了收敛性和稳定性分析。数值模拟证明,与传统技术相比,该算法更有效,而且不需要规则性和指数假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control of Descriptor Systems
While model predictive control (MPC) is widely used in the process industry for its ability to handle constraints and address complex dynamics, its conventional formulations often encounter challenges when dealing with descriptor systems. These formulations rely on system transformations that are applicable only to regular systems in specific scenarios, along with additional index assumptions. This letter formulates the MPC problem of discrete-time linear descriptor systems directly in their original state-space representation. Using the penalized weighted least-squares approach, we derive a quadratic cost function subject to the descriptor system over a finite prediction horizon. Through backward dynamic programming within each horizon, we then solve the constrained optimization problem to construct control inputs for forward-shifted prediction horizons. To accomplish this, we deal with the convergence and stability analysis of the proposed algorithm. Numerical simulations demonstrate its effectiveness compared to traditional techniques, alleviating the need for regularity and index assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信