探索用于液氮温度下先进磁制冷的富铜 CuxMn3-xO4 Spinels 的结构和磁特性

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri
{"title":"探索用于液氮温度下先进磁制冷的富铜 CuxMn3-xO4 Spinels 的结构和磁特性","authors":"Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri","doi":"10.1109/LMAG.2024.3443745","DOIUrl":null,"url":null,"abstract":"Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare Cu\n<italic><sub>x</sub></i>\nMn\n<sub>3−</sub>\n<italic><sub>x</sub></i>\nO\n<sub>4</sub>\n samples with nominal Cu content of \n<italic>x</i>\n = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with \n<italic>x</i>\n = 1.0 and 1.5, which are coupled ferromagnetically, the samples with \n<italic>x</i>\n = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (\n<italic>x</i>\n = 1) to 75 K (\n<italic>x</i>\n = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with \n<italic>x</i>\n = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures\",\"authors\":\"Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri\",\"doi\":\"10.1109/LMAG.2024.3443745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare Cu\\n<italic><sub>x</sub></i>\\nMn\\n<sub>3−</sub>\\n<italic><sub>x</sub></i>\\nO\\n<sub>4</sub>\\n samples with nominal Cu content of \\n<italic>x</i>\\n = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with \\n<italic>x</i>\\n = 1.0 and 1.5, which are coupled ferromagnetically, the samples with \\n<italic>x</i>\\n = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (\\n<italic>x</i>\\n = 1) to 75 K (\\n<italic>x</i>\\n = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with \\n<italic>x</i>\\n = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"15 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637482/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10637482/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

铜锰氧化物尖晶石在液氮温度下具有显著的磁致性能。我们采用软化学溶胶-凝胶法制备了标称铜含量为 x = 1、1.5、1.8 和 2 的 CuxMn3-xO4 样品。根据粉末 X 射线衍射研究,我们成功制备出了尖晶石相中铜含量较高的多相样品。我们深入了解了合成样品的结构、磁性和磁致性。我们发现,与 x = 1.0 和 1.5 的铁磁耦合样品不同,x = 1.8 和 2.0 的样品具有铁磁耦合。过渡温度仅从 78 K(x = 1)略微下降到 75 K(x = 2)。确定了每种化合物的磁熵变化和相对冷却功率的最大值,发现 x = 1.0 的样品由于磁化最大而磁熵变化和相对冷却功率最大。与铜含量无关,所研究的样品显示出大于 139 J/kg 的相对冷却功率,这凸显了这些材料在磁制冷应用中的相关性,尤其是在液氮温度下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures
Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare Cu x Mn 3− x O 4 samples with nominal Cu content of x = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with x = 1.0 and 1.5, which are coupled ferromagnetically, the samples with x = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K ( x = 1) to 75 K ( x = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with x = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信