{"title":"通过原位训练实现相位编码的可重构集成光子单元神经网络","authors":"Shengjie Tang;Cheng Chen;Qi Qin;Xiaoping Liu","doi":"10.1109/JPHOT.2024.3453898","DOIUrl":null,"url":null,"abstract":"Photonic neural networks are emerging as promising computing platforms for artificial intelligence (AI). Particularly, integrated photonic unitary neural networks (IPUNNs) are capable of mitigating gradient vanishing/explosion problems when deeper neural networks are constructed. Furthermore, their optical implementations are also much simpler compared to non-unitary counterparts. Meanwhile, real-valued datasets still dominate AI research and the encoding strategy is critical for IPUNNs' performances. However, there are few studies to compare different encoding strategies of IPUNNs to represent these real-valued datasets and their impacts on IPUNNs' performances. Here, in the scope of encoding strategies for real-valued features, we first compare different schemes, such as phase, amplitude and hybrid encoding using numerical simulations, with benchmarks of decision boundary and image recognition tasks. These encoding strategies of IPUNNs are also compared to non-unitary real-valued neural networks (RVNNs) with trainable biases for the same benchmarks. The results suggest that phase encoding outperforms amplitude and hybrid encoding, and exhibits comparable performances to non-unitary RVNNs. To verify the numerical results, a 10×10 IPUNN chip is designed and fabricated. The phase encoding is chosen to be implemented because of its superior performances in numerical studies. We reconfigure the IPUNN chip to perform decision boundary and image recognition tasks by on-chip in-situ training. The experimental results match the simulations well. Our work provides insights for implementing reconfigurable IPUNNs in AI computing.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-11"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663838","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Integrated Photonic Unitary Neural Networks With Phase Encoding Enabled by In-Situ Training\",\"authors\":\"Shengjie Tang;Cheng Chen;Qi Qin;Xiaoping Liu\",\"doi\":\"10.1109/JPHOT.2024.3453898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic neural networks are emerging as promising computing platforms for artificial intelligence (AI). Particularly, integrated photonic unitary neural networks (IPUNNs) are capable of mitigating gradient vanishing/explosion problems when deeper neural networks are constructed. Furthermore, their optical implementations are also much simpler compared to non-unitary counterparts. Meanwhile, real-valued datasets still dominate AI research and the encoding strategy is critical for IPUNNs' performances. However, there are few studies to compare different encoding strategies of IPUNNs to represent these real-valued datasets and their impacts on IPUNNs' performances. Here, in the scope of encoding strategies for real-valued features, we first compare different schemes, such as phase, amplitude and hybrid encoding using numerical simulations, with benchmarks of decision boundary and image recognition tasks. These encoding strategies of IPUNNs are also compared to non-unitary real-valued neural networks (RVNNs) with trainable biases for the same benchmarks. The results suggest that phase encoding outperforms amplitude and hybrid encoding, and exhibits comparable performances to non-unitary RVNNs. To verify the numerical results, a 10×10 IPUNN chip is designed and fabricated. The phase encoding is chosen to be implemented because of its superior performances in numerical studies. We reconfigure the IPUNN chip to perform decision boundary and image recognition tasks by on-chip in-situ training. The experimental results match the simulations well. Our work provides insights for implementing reconfigurable IPUNNs in AI computing.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 5\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663838/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663838/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reconfigurable Integrated Photonic Unitary Neural Networks With Phase Encoding Enabled by In-Situ Training
Photonic neural networks are emerging as promising computing platforms for artificial intelligence (AI). Particularly, integrated photonic unitary neural networks (IPUNNs) are capable of mitigating gradient vanishing/explosion problems when deeper neural networks are constructed. Furthermore, their optical implementations are also much simpler compared to non-unitary counterparts. Meanwhile, real-valued datasets still dominate AI research and the encoding strategy is critical for IPUNNs' performances. However, there are few studies to compare different encoding strategies of IPUNNs to represent these real-valued datasets and their impacts on IPUNNs' performances. Here, in the scope of encoding strategies for real-valued features, we first compare different schemes, such as phase, amplitude and hybrid encoding using numerical simulations, with benchmarks of decision boundary and image recognition tasks. These encoding strategies of IPUNNs are also compared to non-unitary real-valued neural networks (RVNNs) with trainable biases for the same benchmarks. The results suggest that phase encoding outperforms amplitude and hybrid encoding, and exhibits comparable performances to non-unitary RVNNs. To verify the numerical results, a 10×10 IPUNN chip is designed and fabricated. The phase encoding is chosen to be implemented because of its superior performances in numerical studies. We reconfigure the IPUNN chip to perform decision boundary and image recognition tasks by on-chip in-situ training. The experimental results match the simulations well. Our work provides insights for implementing reconfigurable IPUNNs in AI computing.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.