来自简单复合物的线性编码的权重层次

IF 0.7 3区 数学 Q2 MATHEMATICS
Chao Liu, Dabin Zheng , Wei Lu, Xiaoqiang Wang
{"title":"来自简单复合物的线性编码的权重层次","authors":"Chao Liu,&nbsp;Dabin Zheng ,&nbsp;Wei Lu,&nbsp;Xiaoqiang Wang","doi":"10.1016/j.disc.2024.114240","DOIUrl":null,"url":null,"abstract":"<div><p>The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code <span><math><mi>C</mi></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all <em>r</em>-dimensional subspaces of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><msub><mrow><mi>dim</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114240"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003716/pdfft?md5=b31c93fc7520c0f919446480a13b7f62&pid=1-s2.0-S0012365X24003716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The weight hierarchies of linear codes from simplicial complexes\",\"authors\":\"Chao Liu,&nbsp;Dabin Zheng ,&nbsp;Wei Lu,&nbsp;Xiaoqiang Wang\",\"doi\":\"10.1016/j.disc.2024.114240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code <span><math><mi>C</mi></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all <em>r</em>-dimensional subspaces of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>, where <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><msub><mrow><mi>dim</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114240\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003716/pdfft?md5=b31c93fc7520c0f919446480a13b7f62&pid=1-s2.0-S0012365X24003716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003716\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003716","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

线性编码的广义汉明权重传递了编码的结构信息,决定了编码在各种应用中的性能,因此研究线性编码的广义汉明权重是编码理论中的一个重要研究课题。然而,确定线性编码的广义汉明权重,尤其是权重层次结构,通常具有挑战性。本文研究了一类 Fq 上线性编码 C 的广义汉明权重,该编码由定义集构建。这些定义集要么是特殊的单纯复数,要么是它们在 Fqm 中的补集。我们通过分析某些单纯复数与 Fqm 的所有 r 维子空间的最大或最小交集(其中 1≤r≤dimFq(C) ),确定这些代码的完整权重等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The weight hierarchies of linear codes from simplicial complexes

The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code C over Fq, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in Fqm. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all r-dimensional subspaces of Fqm, where 1rdimFq(C).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信