语义边缘感知参数高效图像过滤技术

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Kunal Pradhan , Swarnajyoti Patra
{"title":"语义边缘感知参数高效图像过滤技术","authors":"Kunal Pradhan ,&nbsp;Swarnajyoti Patra","doi":"10.1016/j.cag.2024.104068","DOIUrl":null,"url":null,"abstract":"<div><p>The success of a structure preserving filtering technique has relied on its capability to recognize structures and textures present in the input image. In this paper a novel structure preserving filtering technique is presented that first, generates an edge-map of the input image by exploiting semantic information. Then, an edge-aware adaptive recursive median filter is utilized to produce the filter image. The technique provides satisfactory results for a wide variety of images with minimal fine-tuning of its parameters. Moreover, along with the various computer graphics applications the proposed technique also shows its robustness to incorporate spatial information for spectral-spatial classification of hyperspectral images. A MATLAB implementation of the proposed technique is available at-<span><span>https://www.github.com/K-Pradhan/A-semantic-edge-aware-parameter-efficient-image-filtering-technique</span><svg><path></path></svg></span></p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104068"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semantic edge-aware parameter efficient image filtering technique\",\"authors\":\"Kunal Pradhan ,&nbsp;Swarnajyoti Patra\",\"doi\":\"10.1016/j.cag.2024.104068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The success of a structure preserving filtering technique has relied on its capability to recognize structures and textures present in the input image. In this paper a novel structure preserving filtering technique is presented that first, generates an edge-map of the input image by exploiting semantic information. Then, an edge-aware adaptive recursive median filter is utilized to produce the filter image. The technique provides satisfactory results for a wide variety of images with minimal fine-tuning of its parameters. Moreover, along with the various computer graphics applications the proposed technique also shows its robustness to incorporate spatial information for spectral-spatial classification of hyperspectral images. A MATLAB implementation of the proposed technique is available at-<span><span>https://www.github.com/K-Pradhan/A-semantic-edge-aware-parameter-efficient-image-filtering-technique</span><svg><path></path></svg></span></p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104068\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

结构保留过滤技术的成功取决于其识别输入图像中结构和纹理的能力。本文提出了一种新颖的结构保护滤波技术,首先,利用语义信息生成输入图像的边缘图。然后,利用边缘感知自适应递归中值滤波器生成滤波图像。该技术只需对参数进行最小限度的微调,就能为各种图像提供令人满意的结果。此外,除了各种计算机图形应用之外,所提出的技术还显示了其在结合空间信息对高光谱图像进行光谱空间分类方面的鲁棒性。拟议技术的 MATLAB 实现可在以下网址获取:https://www.github.com/K-Pradhan/A-semantic-edge-aware-parameter-efficient-image-filtering-technique
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A semantic edge-aware parameter efficient image filtering technique

A semantic edge-aware parameter efficient image filtering technique

The success of a structure preserving filtering technique has relied on its capability to recognize structures and textures present in the input image. In this paper a novel structure preserving filtering technique is presented that first, generates an edge-map of the input image by exploiting semantic information. Then, an edge-aware adaptive recursive median filter is utilized to produce the filter image. The technique provides satisfactory results for a wide variety of images with minimal fine-tuning of its parameters. Moreover, along with the various computer graphics applications the proposed technique also shows its robustness to incorporate spatial information for spectral-spatial classification of hyperspectral images. A MATLAB implementation of the proposed technique is available at-https://www.github.com/K-Pradhan/A-semantic-edge-aware-parameter-efficient-image-filtering-technique

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信