自旋模型和 q-Racah 型距离不规则图

IF 1 3区 数学 Q1 MATHEMATICS
Kazumasa Nomura , Paul Terwilliger
{"title":"自旋模型和 q-Racah 型距离不规则图","authors":"Kazumasa Nomura ,&nbsp;Paul Terwilliger","doi":"10.1016/j.ejc.2024.104069","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Γ</mi></math></span> denote a distance-regular graph, with vertex set <span><math><mi>X</mi></math></span> and diameter <span><math><mrow><mi>D</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. We assume that <span><math><mi>Γ</mi></math></span> is formally self-dual and <span><math><mi>q</mi></math></span>-Racah type. Let <span><math><mi>A</mi></math></span> denote the adjacency matrix of <span><math><mi>Γ</mi></math></span>. Pick <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>, and let <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> denote the dual adjacency matrix of <span><math><mi>Γ</mi></math></span> with respect to <span><math><mi>x</mi></math></span>. The matrices <span><math><mrow><mi>A</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> generate the subconstituent algebra <span><math><mrow><mi>T</mi><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. We assume that for every choice of <span><math><mi>x</mi></math></span> the algebra <span><math><mi>T</mi></math></span> contains a certain central element <span><math><mrow><mi>Z</mi><mo>=</mo><mi>Z</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> whose significance is illuminated by the following relations: <span><span><span><math><mrow><mi>A</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>B</mi><mi>C</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>C</mi><mi>B</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>C</mi><mi>A</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>A</mi><mi>C</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mi>C</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>A</mi><mi>B</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mi>A</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>.</mo></mrow></math></span></span></span> The matrices <span><math><mi>A</mi></math></span>, <span><math><mi>B</mi></math></span> satisfy <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>ɛ</mi><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>α</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mi>ɛ</mi><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>α</mi></mrow></math></span>, where <span><math><mrow><mi>α</mi><mo>,</mo><mi>ɛ</mi></mrow></math></span> are complex scalars used to describe the eigenvalues of <span><math><mi>A</mi></math></span> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The matrix <span><math><mi>C</mi></math></span> is defined using the third displayed equation. We use <span><math><mi>Z</mi></math></span> to construct a spin model <span><math><mi>W</mi></math></span> afforded by <span><math><mi>Γ</mi></math></span>. We investigate the combinatorial implications of <span><math><mi>Z</mi></math></span>. We reverse the logical direction and recover <span><math><mi>Z</mi></math></span> from <span><math><mi>W</mi></math></span>. We finish with some open problems.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin models and distance-regular graphs of q-Racah type\",\"authors\":\"Kazumasa Nomura ,&nbsp;Paul Terwilliger\",\"doi\":\"10.1016/j.ejc.2024.104069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>Γ</mi></math></span> denote a distance-regular graph, with vertex set <span><math><mi>X</mi></math></span> and diameter <span><math><mrow><mi>D</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. We assume that <span><math><mi>Γ</mi></math></span> is formally self-dual and <span><math><mi>q</mi></math></span>-Racah type. Let <span><math><mi>A</mi></math></span> denote the adjacency matrix of <span><math><mi>Γ</mi></math></span>. Pick <span><math><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></math></span>, and let <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> denote the dual adjacency matrix of <span><math><mi>Γ</mi></math></span> with respect to <span><math><mi>x</mi></math></span>. The matrices <span><math><mrow><mi>A</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> generate the subconstituent algebra <span><math><mrow><mi>T</mi><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. We assume that for every choice of <span><math><mi>x</mi></math></span> the algebra <span><math><mi>T</mi></math></span> contains a certain central element <span><math><mrow><mi>Z</mi><mo>=</mo><mi>Z</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> whose significance is illuminated by the following relations: <span><span><span><math><mrow><mi>A</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>B</mi><mi>C</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>C</mi><mi>B</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>C</mi><mi>A</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>A</mi><mi>C</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mi>C</mi><mo>+</mo><mfrac><mrow><mi>q</mi><mi>A</mi><mi>B</mi><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mi>A</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfrac><mo>=</mo><mi>Z</mi><mo>.</mo></mrow></math></span></span></span> The matrices <span><math><mi>A</mi></math></span>, <span><math><mi>B</mi></math></span> satisfy <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>ɛ</mi><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>α</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mi>ɛ</mi><mi>I</mi><mo>)</mo></mrow><mo>/</mo><mi>α</mi></mrow></math></span>, where <span><math><mrow><mi>α</mi><mo>,</mo><mi>ɛ</mi></mrow></math></span> are complex scalars used to describe the eigenvalues of <span><math><mi>A</mi></math></span> and <span><math><msup><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The matrix <span><math><mi>C</mi></math></span> is defined using the third displayed equation. We use <span><math><mi>Z</mi></math></span> to construct a spin model <span><math><mi>W</mi></math></span> afforded by <span><math><mi>Γ</mi></math></span>. We investigate the combinatorial implications of <span><math><mi>Z</mi></math></span>. We reverse the logical direction and recover <span><math><mi>Z</mi></math></span> from <span><math><mi>W</mi></math></span>. We finish with some open problems.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001549\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 Γ 表示一个距离规则图,其顶点集为 X,直径为 D≥3。我们假设 Γ 是形式上自偶的 q-Racah 型图。让 A 表示 Γ 的邻接矩阵。选取 x∈X,让 A∗=A∗(x) 表示Γ 关于 x 的对偶邻接矩阵。矩阵 A、A∗ 生成子构成代数 T=T(x)。我们假设,对于 x 的每一种选择,代数 T 都包含某个中心元素 Z=Z(x),其意义由以下关系揭示:A+qBC-q-1CBq2-q-2=Z,B+qCA-q-1ACq2-q-2=Z,C+qAB-q-1BAq2-q-2=Z。矩阵 A、B 满足 A=(A-ɛI)/α 和 B=(A∗-ɛI)/α,其中 α、ɛ 是复标量,用于描述 A 和 A∗ 的特征值。矩阵 C 是用第三个显示方程定义的。我们用 Z 来构建一个由 Γ 提供的自旋模型 W。我们研究了 Z 的组合意义,并逆转逻辑方向,从 W 中恢复了 Z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin models and distance-regular graphs of q-Racah type

Let Γ denote a distance-regular graph, with vertex set X and diameter D3. We assume that Γ is formally self-dual and q-Racah type. Let A denote the adjacency matrix of Γ. Pick xX, and let A=A(x) denote the dual adjacency matrix of Γ with respect to x. The matrices A,A generate the subconstituent algebra T=T(x). We assume that for every choice of x the algebra T contains a certain central element Z=Z(x) whose significance is illuminated by the following relations: A+qBCq1CBq2q2=Z,B+qCAq1ACq2q2=Z,C+qABq1BAq2q2=Z. The matrices A, B satisfy A=(AɛI)/α and B=(AɛI)/α, where α,ɛ are complex scalars used to describe the eigenvalues of A and A. The matrix C is defined using the third displayed equation. We use Z to construct a spin model W afforded by Γ. We investigate the combinatorial implications of Z. We reverse the logical direction and recover Z from W. We finish with some open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信