关于渐近基的限制阶

IF 0.7 3区 数学 Q2 MATHEMATICS
Jin-Hui Fang, Ying Cheng
{"title":"关于渐近基的限制阶","authors":"Jin-Hui Fang,&nbsp;Ying Cheng","doi":"10.1016/j.disc.2024.114260","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>N</mi></math></span> be the set of all positive integers. For a set <em>A</em> of positive integers, let <span><math><mi>A</mi><mo>∼</mo><mi>N</mi></math></span> denote that <em>A</em> contains all but finitely many positive integers. For an integer <span><math><mi>h</mi><mo>⩾</mo><mn>2</mn></math></span>, define <span><math><mi>h</mi><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> and <span><math><mi>h</mi><mo>×</mo><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>}</mo></math></span>. In 2023, Chen and Yu [Discrete Math. 346 (2023), Paper No. 113388.] proved that, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>. In this paper, we construct a <em>somewhat dense</em> set <em>B</em> satisfying the above properties. That is, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114260"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003911/pdfft?md5=aacfc54f27829de05568c6d3ed5aa0a2&pid=1-s2.0-S0012365X24003911-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the restricted order of asymptotic bases\",\"authors\":\"Jin-Hui Fang,&nbsp;Ying Cheng\",\"doi\":\"10.1016/j.disc.2024.114260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>N</mi></math></span> be the set of all positive integers. For a set <em>A</em> of positive integers, let <span><math><mi>A</mi><mo>∼</mo><mi>N</mi></math></span> denote that <em>A</em> contains all but finitely many positive integers. For an integer <span><math><mi>h</mi><mo>⩾</mo><mn>2</mn></math></span>, define <span><math><mi>h</mi><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>}</mo></math></span> and <span><math><mi>h</mi><mo>×</mo><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>∈</mo><mi>A</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>≠</mo><mi>j</mi><mo>}</mo></math></span>. In 2023, Chen and Yu [Discrete Math. 346 (2023), Paper No. 113388.] proved that, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>. In this paper, we construct a <em>somewhat dense</em> set <em>B</em> satisfying the above properties. That is, there exists a set <em>B</em> of positive integers such that: <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mspace></mspace><mi>B</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>, <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>≁</mo><mi>N</mi></math></span>, and <span><math><mi>B</mi><mo>⋃</mo><mo>(</mo><mn>2</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>⋃</mo><mo>(</mo><mn>3</mn><mo>×</mo><mi>B</mi><mo>)</mo><mo>∼</mo><mi>N</mi></math></span>.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114260\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003911/pdfft?md5=aacfc54f27829de05568c6d3ed5aa0a2&pid=1-s2.0-S0012365X24003911-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003911\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003911","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 N 是所有正整数的集合。对于一个正整数集合 A,让 A∼N 表示 A 包含所有但不超过有限个的正整数。对于整数 h⩾2,定义 hA={a1+⋯+ah:a1,⋯,ah∈A} 和 h×A={a1+⋯+ah:a1,⋯,ah∈A,ai≠aj for i≠j} 。2023 年,Chen 和 Yu [Discrete Math. 346 (2023),Paper No. 113388.] 证明,存在一个正整数集合 B,使得:limx→∞B(x)/x=1/2,B⋃(2B)∼N,B⋃(2×B)≁N,且 B⋃(2×B)⋃(3×B)∼N。在本文中,我们将构造一个满足上述性质的略密集 B。也就是说,存在一个正整数集合 B,使得:liminfx→∞B(x)/x=1/2,limsupx→∞B(x)/x=1,B⋃(2B)∼N,B⋃(2×B)≁N,且 B⋃(2×B)⋃(3×B)∼N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the restricted order of asymptotic bases

Let N be the set of all positive integers. For a set A of positive integers, let AN denote that A contains all but finitely many positive integers. For an integer h2, define hA={a1++ah:a1,,ahA} and h×A={a1++ah:a1,,ahA,aiaj for ij}. In 2023, Chen and Yu [Discrete Math. 346 (2023), Paper No. 113388.] proved that, there exists a set B of positive integers such that: limxB(x)/x=1/2, B(2B)N, B(2×B)N, and B(2×B)(3×B)N. In this paper, we construct a somewhat dense set B satisfying the above properties. That is, there exists a set B of positive integers such that: liminfxB(x)/x=1/2, limsupxB(x)/x=1, B(2B)N, B(2×B)N, and B(2×B)(3×B)N.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信