Zuzana Birčáková , Miroslav Neslušan , Peter Kollár , Ján Füzer , Radovan Bureš , Mária Fáberová , Bernd Weidenfeller , Peter Minárik , Vasily Milyutin
{"title":"通过高压压制增强纯铁粉芯的软磁特性和高频稳定性 - 一种可替代软磁复合材料的环保和成本节约型解决方案","authors":"Zuzana Birčáková , Miroslav Neslušan , Peter Kollár , Ján Füzer , Radovan Bureš , Mária Fáberová , Bernd Weidenfeller , Peter Minárik , Vasily Milyutin","doi":"10.1016/j.mtsust.2024.100974","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the analysis of the magnetic behaviour of soft magnetic powder compacts vs. the increasing compacting pressure. An unexpectedly positive result was obtained at a pressure of 1500 MPa, as the pure iron compact without coating of powder particles and without subsequent heat treatment showed very good magnetic properties compared to the class of soft magnetic composites (SMCs). In particular, the effective relative permeability of <span><math><mrow><msub><mi>μ</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></mrow></math></span> ∼120, stable up to a frequency <span><math><mrow><mi>f</mi></mrow></math></span> ∼200 kHz, the maximum total relative permeability of <span><math><mrow><msubsup><mi>μ</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow><mi>max</mi></msubsup></mrow></math></span> ∼700, and the specific electrical resistivity of <span><math><mrow><msub><mi>ρ</mi><mi>R</mi></msub></mrow></math></span> ∼10<sup>−5</sup> Ω m. This phenomenon was explained on the basis of analyses of the samples microstructure, the magnetic and electrical properties, magnetization processes, inner demagnetizing fields, Barkhausen noise and thermal diffusivity. It was found that the grain size refinement inside iron particles occurs at certain elevated compaction pressure because the deformation bands gradually rise and break up with compaction pressure, leading to a higher resistivity of the compact thus to its SMC-like behaviour, despite the counteracting effect of increasing number of iron-iron bridges among neighbouring particles. The grain size refinement causes also the refinement of magnetic domain structure, which facilitates the magnetization reversal, although, the increased internal stresses and microstructural defects affect domain wall mobility negatively. The most favourable combination of the mentioned factors influences, finally resulting in the soft magnetic properties enhancement, appeared at 1500 MPa. Due to high-pressure compaction, the high density (above ∼95 % of iron density) of a compact was achieved, ensuring sufficient mechanical properties. The presented material can serve as a potential supplanter of SMCs in many applications as it provides evident advantages, such as its easy production with minimum chemical waste (because any additional chemical processes and substances needed for particle coatings in conventional SMCs are completely omitted), as well as easy recycling process, which makes it eco-friendly and cost-effective, nevertheless, maintaining the advantages of SMCs.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100974"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced soft magnetic properties with high frequency stability of pure iron powder cores via high-pressure compaction – An environment and cost saving solution as a prospective alternative to soft magnetic composites\",\"authors\":\"Zuzana Birčáková , Miroslav Neslušan , Peter Kollár , Ján Füzer , Radovan Bureš , Mária Fáberová , Bernd Weidenfeller , Peter Minárik , Vasily Milyutin\",\"doi\":\"10.1016/j.mtsust.2024.100974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the analysis of the magnetic behaviour of soft magnetic powder compacts vs. the increasing compacting pressure. An unexpectedly positive result was obtained at a pressure of 1500 MPa, as the pure iron compact without coating of powder particles and without subsequent heat treatment showed very good magnetic properties compared to the class of soft magnetic composites (SMCs). In particular, the effective relative permeability of <span><math><mrow><msub><mi>μ</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub></mrow></math></span> ∼120, stable up to a frequency <span><math><mrow><mi>f</mi></mrow></math></span> ∼200 kHz, the maximum total relative permeability of <span><math><mrow><msubsup><mi>μ</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow><mi>max</mi></msubsup></mrow></math></span> ∼700, and the specific electrical resistivity of <span><math><mrow><msub><mi>ρ</mi><mi>R</mi></msub></mrow></math></span> ∼10<sup>−5</sup> Ω m. This phenomenon was explained on the basis of analyses of the samples microstructure, the magnetic and electrical properties, magnetization processes, inner demagnetizing fields, Barkhausen noise and thermal diffusivity. It was found that the grain size refinement inside iron particles occurs at certain elevated compaction pressure because the deformation bands gradually rise and break up with compaction pressure, leading to a higher resistivity of the compact thus to its SMC-like behaviour, despite the counteracting effect of increasing number of iron-iron bridges among neighbouring particles. The grain size refinement causes also the refinement of magnetic domain structure, which facilitates the magnetization reversal, although, the increased internal stresses and microstructural defects affect domain wall mobility negatively. The most favourable combination of the mentioned factors influences, finally resulting in the soft magnetic properties enhancement, appeared at 1500 MPa. Due to high-pressure compaction, the high density (above ∼95 % of iron density) of a compact was achieved, ensuring sufficient mechanical properties. The presented material can serve as a potential supplanter of SMCs in many applications as it provides evident advantages, such as its easy production with minimum chemical waste (because any additional chemical processes and substances needed for particle coatings in conventional SMCs are completely omitted), as well as easy recycling process, which makes it eco-friendly and cost-effective, nevertheless, maintaining the advantages of SMCs.</p></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 100974\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003105\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Enhanced soft magnetic properties with high frequency stability of pure iron powder cores via high-pressure compaction – An environment and cost saving solution as a prospective alternative to soft magnetic composites
The paper presents the analysis of the magnetic behaviour of soft magnetic powder compacts vs. the increasing compacting pressure. An unexpectedly positive result was obtained at a pressure of 1500 MPa, as the pure iron compact without coating of powder particles and without subsequent heat treatment showed very good magnetic properties compared to the class of soft magnetic composites (SMCs). In particular, the effective relative permeability of ∼120, stable up to a frequency ∼200 kHz, the maximum total relative permeability of ∼700, and the specific electrical resistivity of ∼10−5 Ω m. This phenomenon was explained on the basis of analyses of the samples microstructure, the magnetic and electrical properties, magnetization processes, inner demagnetizing fields, Barkhausen noise and thermal diffusivity. It was found that the grain size refinement inside iron particles occurs at certain elevated compaction pressure because the deformation bands gradually rise and break up with compaction pressure, leading to a higher resistivity of the compact thus to its SMC-like behaviour, despite the counteracting effect of increasing number of iron-iron bridges among neighbouring particles. The grain size refinement causes also the refinement of magnetic domain structure, which facilitates the magnetization reversal, although, the increased internal stresses and microstructural defects affect domain wall mobility negatively. The most favourable combination of the mentioned factors influences, finally resulting in the soft magnetic properties enhancement, appeared at 1500 MPa. Due to high-pressure compaction, the high density (above ∼95 % of iron density) of a compact was achieved, ensuring sufficient mechanical properties. The presented material can serve as a potential supplanter of SMCs in many applications as it provides evident advantages, such as its easy production with minimum chemical waste (because any additional chemical processes and substances needed for particle coatings in conventional SMCs are completely omitted), as well as easy recycling process, which makes it eco-friendly and cost-effective, nevertheless, maintaining the advantages of SMCs.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.