重新审视斯皮尔曼 ρ 和斯皮尔曼脚规 ϕ 所确定的区域

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marco Tschimpke , Manuela Schreyer , Wolfgang Trutschnig
{"title":"重新审视斯皮尔曼 ρ 和斯皮尔曼脚规 ϕ 所确定的区域","authors":"Marco Tschimpke ,&nbsp;Manuela Schreyer ,&nbsp;Wolfgang Trutschnig","doi":"10.1016/j.cam.2024.116259","DOIUrl":null,"url":null,"abstract":"<div><p>Kokol and Stopar (2023) recently studied the exact region <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> determined by Spearman’s footrule <span><math><mi>ϕ</mi></math></span> and Spearman’s <span><math><mi>ρ</mi></math></span> and derived a sharp lower, as well as a non-sharp upper bound for <span><math><mi>ρ</mi></math></span> given <span><math><mi>ϕ</mi></math></span>. Considering that the proofs for establishing these inequalities are novel and interesting, but technically quite involved we here provide alternative simpler proofs mainly building upon shuffles, symmetry, denseness and mass shifting. As a by-product of these proofs we derive several additional results on shuffle rearrangements and the interplay between diagonal copulas and shuffles which are of independent interest. Moreover we finally show that we can get closer to the (non-sharp) upper bound than established in the literature so far.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377042724005089/pdfft?md5=496684547289907e38a430b957fc4235&pid=1-s2.0-S0377042724005089-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting the region determined by Spearman’s ρ and Spearman’s footrule ϕ\",\"authors\":\"Marco Tschimpke ,&nbsp;Manuela Schreyer ,&nbsp;Wolfgang Trutschnig\",\"doi\":\"10.1016/j.cam.2024.116259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kokol and Stopar (2023) recently studied the exact region <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>ρ</mi></mrow></msub></math></span> determined by Spearman’s footrule <span><math><mi>ϕ</mi></math></span> and Spearman’s <span><math><mi>ρ</mi></math></span> and derived a sharp lower, as well as a non-sharp upper bound for <span><math><mi>ρ</mi></math></span> given <span><math><mi>ϕ</mi></math></span>. Considering that the proofs for establishing these inequalities are novel and interesting, but technically quite involved we here provide alternative simpler proofs mainly building upon shuffles, symmetry, denseness and mass shifting. As a by-product of these proofs we derive several additional results on shuffle rearrangements and the interplay between diagonal copulas and shuffles which are of independent interest. Moreover we finally show that we can get closer to the (non-sharp) upper bound than established in the literature so far.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005089/pdfft?md5=496684547289907e38a430b957fc4235&pid=1-s2.0-S0377042724005089-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Kokol 和 Stopar(2023 年)最近研究了由斯皮尔曼脚规 ϕ 和斯皮尔曼 ρ 确定的精确区域 Ωϕ,ρ ,并得出了给定 ϕ 的 ρ 的尖锐下限和非尖锐上限。考虑到建立这些不等式的证明既新颖又有趣,但技术上相当复杂,我们在此主要基于洗牌、对称性、致密性和质量转移提供了更简单的证明。作为这些证明的副产品,我们还推导出了几个关于洗牌重排以及对角协方差与洗牌之间相互作用的额外结果,这些结果具有独立的意义。此外,我们还最终证明,我们可以比迄今为止的文献更接近(非锐利的)上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the region determined by Spearman’s ρ and Spearman’s footrule ϕ

Kokol and Stopar (2023) recently studied the exact region Ωϕ,ρ determined by Spearman’s footrule ϕ and Spearman’s ρ and derived a sharp lower, as well as a non-sharp upper bound for ρ given ϕ. Considering that the proofs for establishing these inequalities are novel and interesting, but technically quite involved we here provide alternative simpler proofs mainly building upon shuffles, symmetry, denseness and mass shifting. As a by-product of these proofs we derive several additional results on shuffle rearrangements and the interplay between diagonal copulas and shuffles which are of independent interest. Moreover we finally show that we can get closer to the (non-sharp) upper bound than established in the literature so far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信