关于单位矢量自旋轨道的一些评论

IF 0.7 2区 数学 Q2 MATHEMATICS
Tariq Syed
{"title":"关于单位矢量自旋轨道的一些评论","authors":"Tariq Syed","doi":"10.1016/j.jpaa.2024.107802","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and a commutative ring <em>R</em> with <span><math><mn>2</mn><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, the group <span><math><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> acts on the set <span><math><mi>U</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of unimodular vectors of length <em>n</em> and <span><math><mi>S</mi><mi>p</mi><mi>i</mi><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> acts on the set of unit vectors <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. We give an example of a ring for which the comparison map <span><math><mi>U</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>S</mi><mi>p</mi><mi>i</mi><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> fails to be bijective.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001993/pdfft?md5=92a252c768ddb3132dc1cf4aa6995e84&pid=1-s2.0-S0022404924001993-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Some remarks on spin-orbits of unit vectors\",\"authors\":\"Tariq Syed\",\"doi\":\"10.1016/j.jpaa.2024.107802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and a commutative ring <em>R</em> with <span><math><mn>2</mn><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, the group <span><math><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> acts on the set <span><math><mi>U</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of unimodular vectors of length <em>n</em> and <span><math><mi>S</mi><mi>p</mi><mi>i</mi><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> acts on the set of unit vectors <span><math><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. We give an example of a ring for which the comparison map <span><math><mi>U</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo><mo>/</mo><mi>S</mi><mi>p</mi><mi>i</mi><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> fails to be bijective.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001993/pdfft?md5=92a252c768ddb3132dc1cf4aa6995e84&pid=1-s2.0-S0022404924001993-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001993\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001993","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 n∈N 和 2∈R× 的交换环 R,群 SLn(R) 作用于长度为 n 的单模向量集 Umn(R),而 Spin2n(R) 作用于单位向量集 U2n-1(R)。我们举例说明 Umn(R)/SLn(R)→U2n-1(R)/Spin2n(R) 的比较映射不具有双射性的环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some remarks on spin-orbits of unit vectors

For nN and a commutative ring R with 2R×, the group SLn(R) acts on the set Umn(R) of unimodular vectors of length n and Spin2n(R) acts on the set of unit vectors U2n1(R). We give an example of a ring for which the comparison map Umn(R)/SLn(R)U2n1(R)/Spin2n(R) fails to be bijective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信