揭开胃组织力学的神秘面纱:构成模型、损伤概率和微观结构见解的比较

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL
François Fournier , Thierry Bège , Jean-Philippe Dales , Wei Wei , Catherine Masson
{"title":"揭开胃组织力学的神秘面纱:构成模型、损伤概率和微观结构见解的比较","authors":"François Fournier ,&nbsp;Thierry Bège ,&nbsp;Jean-Philippe Dales ,&nbsp;Wei Wei ,&nbsp;Catherine Masson","doi":"10.1016/j.jmbbm.2024.106712","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing prevalence of obesity worldwide, bariatric surgery is becoming increasingly common. However, the mechanic of the gastric wall related to bariatric surgery complications remains to be investigated. This study aims to understand mechanical behaviour of stomach by developing advanced material laws for gastric tissue incorporating microstructure. A multi-scale characterisation of the porcine stomach wall was performed in the fundus and corpus anatomical regions and in circumferential and longitudinal orientations The protocol included uniaxial tensile testing until damage, survival analysis to provide damage probability, comparison of phenomenological (Fung and Ogden order 1, 2 and 3) and structural (Holzapfel fibre-reinforced) computational models fitted to the experimental data, and quantitative analysis of elastin and collagen fibre structure from histological slides. All constitutive models fitted the experimental data well (r<sup>2</sup> &gt; 0.988 and RSME&lt;3.8 kPa). Longitudinal and circumferential elastic modulus in quasi linear phase were respectively 1.75 ± 1.2 MPa, 0.76 ± 0.35 MPa for fundus, and 2.30 ± 0.66 MPa, 1.36 ± 0.89 MPa for corpus, highlighting significant differences between orientations in fundus and corpus, with an overall softer fundus in the circumferential direction. Microstructure analysis illustrated collagen and elastin fibre orientation, dispersion and density. As microstructure appears to play an important role in stomach biomechanics, model incorporating fibre structure such as Holzapfel fibre-reinforced model, seem best suited to describe the material behaviour of the stomach wall. Future research should complement these findings with an expanded sample set in human models.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106712"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751616124003448/pdfft?md5=026643cbbf376768caf44972a5b329a7&pid=1-s2.0-S1751616124003448-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unravelling the mechanics of gastric tissue: A comparison of constitutive models, damage probability and microstructural insights\",\"authors\":\"François Fournier ,&nbsp;Thierry Bège ,&nbsp;Jean-Philippe Dales ,&nbsp;Wei Wei ,&nbsp;Catherine Masson\",\"doi\":\"10.1016/j.jmbbm.2024.106712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing prevalence of obesity worldwide, bariatric surgery is becoming increasingly common. However, the mechanic of the gastric wall related to bariatric surgery complications remains to be investigated. This study aims to understand mechanical behaviour of stomach by developing advanced material laws for gastric tissue incorporating microstructure. A multi-scale characterisation of the porcine stomach wall was performed in the fundus and corpus anatomical regions and in circumferential and longitudinal orientations The protocol included uniaxial tensile testing until damage, survival analysis to provide damage probability, comparison of phenomenological (Fung and Ogden order 1, 2 and 3) and structural (Holzapfel fibre-reinforced) computational models fitted to the experimental data, and quantitative analysis of elastin and collagen fibre structure from histological slides. All constitutive models fitted the experimental data well (r<sup>2</sup> &gt; 0.988 and RSME&lt;3.8 kPa). Longitudinal and circumferential elastic modulus in quasi linear phase were respectively 1.75 ± 1.2 MPa, 0.76 ± 0.35 MPa for fundus, and 2.30 ± 0.66 MPa, 1.36 ± 0.89 MPa for corpus, highlighting significant differences between orientations in fundus and corpus, with an overall softer fundus in the circumferential direction. Microstructure analysis illustrated collagen and elastin fibre orientation, dispersion and density. As microstructure appears to play an important role in stomach biomechanics, model incorporating fibre structure such as Holzapfel fibre-reinforced model, seem best suited to describe the material behaviour of the stomach wall. Future research should complement these findings with an expanded sample set in human models.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106712\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003448/pdfft?md5=026643cbbf376768caf44972a5b329a7&pid=1-s2.0-S1751616124003448-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003448\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003448","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着全球肥胖症发病率的增加,减肥手术也越来越普遍。然而,与减肥手术并发症相关的胃壁力学仍有待研究。本研究旨在通过开发结合微观结构的先进胃组织材料定律来了解胃的力学行为。该方案包括单轴拉伸测试直至损坏、生存分析以提供损坏概率、比较与实验数据相匹配的现象学(Fung 和 Ogden 1、2 和 3 阶)和结构(Holzapfel 纤维增强)计算模型,以及对组织学切片中的弹性蛋白和胶原纤维结构进行定量分析。所有构成模型都很好地拟合了实验数据(r2> 0.988 和 RSME<3.8 kPa)。在准线性阶段,基底的纵向和周向弹性模量分别为 1.75 ± 1.2 MPa、0.76 ± 0.35 MPa,而冠状层则分别为 2.30 ± 0.66 MPa、1.36 ± 0.89 MPa。微观结构分析显示了胶原纤维和弹性纤维的取向、分散性和密度。由于微观结构似乎在胃的生物力学中扮演着重要角色,因此包含纤维结构的模型,如 Holzapfel 纤维增强模型,似乎最适合描述胃壁的材料行为。未来的研究应通过扩大人体模型的样本集来补充这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling the mechanics of gastric tissue: A comparison of constitutive models, damage probability and microstructural insights

Unravelling the mechanics of gastric tissue: A comparison of constitutive models, damage probability and microstructural insights

With the increasing prevalence of obesity worldwide, bariatric surgery is becoming increasingly common. However, the mechanic of the gastric wall related to bariatric surgery complications remains to be investigated. This study aims to understand mechanical behaviour of stomach by developing advanced material laws for gastric tissue incorporating microstructure. A multi-scale characterisation of the porcine stomach wall was performed in the fundus and corpus anatomical regions and in circumferential and longitudinal orientations The protocol included uniaxial tensile testing until damage, survival analysis to provide damage probability, comparison of phenomenological (Fung and Ogden order 1, 2 and 3) and structural (Holzapfel fibre-reinforced) computational models fitted to the experimental data, and quantitative analysis of elastin and collagen fibre structure from histological slides. All constitutive models fitted the experimental data well (r2 > 0.988 and RSME<3.8 kPa). Longitudinal and circumferential elastic modulus in quasi linear phase were respectively 1.75 ± 1.2 MPa, 0.76 ± 0.35 MPa for fundus, and 2.30 ± 0.66 MPa, 1.36 ± 0.89 MPa for corpus, highlighting significant differences between orientations in fundus and corpus, with an overall softer fundus in the circumferential direction. Microstructure analysis illustrated collagen and elastin fibre orientation, dispersion and density. As microstructure appears to play an important role in stomach biomechanics, model incorporating fibre structure such as Holzapfel fibre-reinforced model, seem best suited to describe the material behaviour of the stomach wall. Future research should complement these findings with an expanded sample set in human models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信