{"title":"新型异喹啉衍生物作为强效吲哚胺 2,3-二氧合酶 1 和色氨酸 2,3-二氧合酶双重抑制剂的发现、合成和生物学评价","authors":"","doi":"10.1016/j.ejmech.2024.116852","DOIUrl":null,"url":null,"abstract":"<div><p>Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound <strong>43b</strong> with IC<sub>50</sub> values of 0.31 μM for IDO1 and 0.08 μM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound <strong>43b</strong> to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation <em>in vivo</em> showed that <strong>43b</strong> displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16–F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.</p></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery, synthesis and biological evaluation of novel isoquinoline derivatives as potent indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase dual inhibitors\",\"authors\":\"\",\"doi\":\"10.1016/j.ejmech.2024.116852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound <strong>43b</strong> with IC<sub>50</sub> values of 0.31 μM for IDO1 and 0.08 μM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound <strong>43b</strong> to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation <em>in vivo</em> showed that <strong>43b</strong> displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16–F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.</p></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424007335\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424007335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery, synthesis and biological evaluation of novel isoquinoline derivatives as potent indoleamine 2, 3-dioxygenase 1 and tryptophan 2, 3-dioxygenase dual inhibitors
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound 43b with IC50 values of 0.31 μM for IDO1 and 0.08 μM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound 43b to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation in vivo showed that 43b displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16–F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.