cathepsin K 诱导的蛋白多糖降解对牙本质胶原蛋白的影响

IF 2.2 4区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
{"title":"cathepsin K 诱导的蛋白多糖降解对牙本质胶原蛋白的影响","authors":"","doi":"10.1016/j.archoralbio.2024.106091","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation.</p></div><div><h3>Materials and Methods</h3><p>Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 μM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05.</p></div><div><h3>Results</h3><p>The production of GAG was significantly lower in the ODN group than in the DW group (<em>P</em> &lt; 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (<em>P</em> &lt; 0.05).</p></div><div><h3>Conclusions</h3><p>CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.</p></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of cathepsin K-induced proteoglycans degradation on dentin collagen\",\"authors\":\"\",\"doi\":\"10.1016/j.archoralbio.2024.106091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation.</p></div><div><h3>Materials and Methods</h3><p>Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 μM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05.</p></div><div><h3>Results</h3><p>The production of GAG was significantly lower in the ODN group than in the DW group (<em>P</em> &lt; 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (<em>P</em> &lt; 0.05).</p></div><div><h3>Conclusions</h3><p>CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.</p></div>\",\"PeriodicalId\":8288,\"journal\":{\"name\":\"Archives of oral biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of oral biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003996924002127\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996924002127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

材料与方法制备脱矿牙本质样品,将其分为以下几组:去离子水组(DW)、0.1 U/mL软骨素酶ABC组(C-ABC)和1 μM奥达那替布组(ODN)。然后,将它们浸泡 48 h,然后在 1 mL PBS(pH=5.5)中于 37 °C培养 5 d。为了确定 catK 介导的 PGs 对牙本质胶原降解的影响,还进行了羟脯氨酸(HYP)测定、牙本质交联程度评估和扫描电子显微镜(SEM)评估。统计分析采用单因素方差分析,然后进行 Tukey 检验或韦尔奇方差分析,然后进行 Dunnett 检验,显著性水平为 0.05。结果 ODN 组的 GAG 产量明显低于 DW 组(P <0.05),表明 ODN 处理后牙本质中的 PG 降解减少。此外,ODN 处理最大程度地减少了胶原纤维的间隙,改善了纤维排列,并显著提高了胶原交联度,从而减少了牙本质中胶原纤维降解的总量(P < 0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of cathepsin K-induced proteoglycans degradation on dentin collagen

Objectives

This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation.

Materials and Methods

Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 μM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05.

Results

The production of GAG was significantly lower in the ODN group than in the DW group (P < 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (P < 0.05).

Conclusions

CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of oral biology
Archives of oral biology 医学-牙科与口腔外科
CiteScore
5.10
自引率
3.30%
发文量
177
审稿时长
26 days
期刊介绍: Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including: Cell and molecular biology Molecular genetics Immunology Pathogenesis Cellular microbiology Embryology Syndromology Forensic dentistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信