{"title":"用于加强传染病管理的人工智能-临床决策支持系统:加速检测肺炎克雷伯菌对头孢他啶-阿维巴坦的耐药性","authors":"","doi":"10.1016/j.jiph.2024.102541","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Effective and rapid diagnostic strategies are required to manage antibiotic resistance in <em>Klebsiella pneumonia</em> (KP). This study aimed to design an artificial intelligence-clinical decision support system (AI-CDSS) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning for the rapid detection of ceftazidime-avibactam (CZA) resistance in KP to improve clinical decision-making processes<em>.</em></p></div><div><h3>Methods</h3><p>Out of 107,721 bacterial samples, 675 specimens of KP with suspected multi-drug resistance were selected. These specimens were collected from a tertiary hospital and four secondary hospitals between 2022 and 2023 to evaluate CZA resistance. We used MALDI-TOF MS and machine learning to develop an AI-CDSS with enhanced speed of resistance detection.</p></div><div><h3>Results</h3><p>Machine learning models, especially light gradient boosting machines (LGBM), exhibited an area under the curve (AUC) of 0.95, indicating high accuracy. The predictive models formed the core of our newly developed AI-CDSS, enabling clinical decisions quicker than traditional methods using culture and antibiotic susceptibility testing by a day.</p></div><div><h3>Conclusions</h3><p>The study confirms that MALDI-TOF MS, integrated with machine learning, can swiftly detect CZA resistance. Incorporating this insight into an AI-CDSS could transform clinical workflows, giving healthcare professionals immediate, crucial insights for shaping treatment plans. This approach promises to be a template for future anti-resistance strategies, emphasizing the vital importance of advanced diagnostics in enhancing public health outcomes.</p></div>","PeriodicalId":16087,"journal":{"name":"Journal of Infection and Public Health","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876034124002752/pdfft?md5=ad4e732328ff9ab82e218130e2797f13&pid=1-s2.0-S1876034124002752-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-clinical decision support system for enhanced infectious disease management: Accelerating ceftazidime-avibactam resistance detection in Klebsiella pneumoniae\",\"authors\":\"\",\"doi\":\"10.1016/j.jiph.2024.102541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Effective and rapid diagnostic strategies are required to manage antibiotic resistance in <em>Klebsiella pneumonia</em> (KP). This study aimed to design an artificial intelligence-clinical decision support system (AI-CDSS) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning for the rapid detection of ceftazidime-avibactam (CZA) resistance in KP to improve clinical decision-making processes<em>.</em></p></div><div><h3>Methods</h3><p>Out of 107,721 bacterial samples, 675 specimens of KP with suspected multi-drug resistance were selected. These specimens were collected from a tertiary hospital and four secondary hospitals between 2022 and 2023 to evaluate CZA resistance. We used MALDI-TOF MS and machine learning to develop an AI-CDSS with enhanced speed of resistance detection.</p></div><div><h3>Results</h3><p>Machine learning models, especially light gradient boosting machines (LGBM), exhibited an area under the curve (AUC) of 0.95, indicating high accuracy. The predictive models formed the core of our newly developed AI-CDSS, enabling clinical decisions quicker than traditional methods using culture and antibiotic susceptibility testing by a day.</p></div><div><h3>Conclusions</h3><p>The study confirms that MALDI-TOF MS, integrated with machine learning, can swiftly detect CZA resistance. Incorporating this insight into an AI-CDSS could transform clinical workflows, giving healthcare professionals immediate, crucial insights for shaping treatment plans. This approach promises to be a template for future anti-resistance strategies, emphasizing the vital importance of advanced diagnostics in enhancing public health outcomes.</p></div>\",\"PeriodicalId\":16087,\"journal\":{\"name\":\"Journal of Infection and Public Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1876034124002752/pdfft?md5=ad4e732328ff9ab82e218130e2797f13&pid=1-s2.0-S1876034124002752-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infection and Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876034124002752\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infection and Public Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876034124002752","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Artificial intelligence-clinical decision support system for enhanced infectious disease management: Accelerating ceftazidime-avibactam resistance detection in Klebsiella pneumoniae
Background
Effective and rapid diagnostic strategies are required to manage antibiotic resistance in Klebsiella pneumonia (KP). This study aimed to design an artificial intelligence-clinical decision support system (AI-CDSS) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning for the rapid detection of ceftazidime-avibactam (CZA) resistance in KP to improve clinical decision-making processes.
Methods
Out of 107,721 bacterial samples, 675 specimens of KP with suspected multi-drug resistance were selected. These specimens were collected from a tertiary hospital and four secondary hospitals between 2022 and 2023 to evaluate CZA resistance. We used MALDI-TOF MS and machine learning to develop an AI-CDSS with enhanced speed of resistance detection.
Results
Machine learning models, especially light gradient boosting machines (LGBM), exhibited an area under the curve (AUC) of 0.95, indicating high accuracy. The predictive models formed the core of our newly developed AI-CDSS, enabling clinical decisions quicker than traditional methods using culture and antibiotic susceptibility testing by a day.
Conclusions
The study confirms that MALDI-TOF MS, integrated with machine learning, can swiftly detect CZA resistance. Incorporating this insight into an AI-CDSS could transform clinical workflows, giving healthcare professionals immediate, crucial insights for shaping treatment plans. This approach promises to be a template for future anti-resistance strategies, emphasizing the vital importance of advanced diagnostics in enhancing public health outcomes.
期刊介绍:
The Journal of Infection and Public Health, first official journal of the Saudi Arabian Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences and the Saudi Association for Public Health, aims to be the foremost scientific, peer-reviewed journal encompassing infection prevention and control, microbiology, infectious diseases, public health and the application of healthcare epidemiology to the evaluation of health outcomes. The point of view of the journal is that infection and public health are closely intertwined and that advances in one area will have positive consequences on the other.
The journal will be useful to all health professionals who are partners in the management of patients with communicable diseases, keeping them up to date. The journal is proud to have an international and diverse editorial board that will assist and facilitate the publication of articles that reflect a global view on infection control and public health, as well as emphasizing our focus on supporting the needs of public health practitioners.
It is our aim to improve healthcare by reducing risk of infection and related adverse outcomes by critical review, selection, and dissemination of new and relevant information in the field of infection control, public health and infectious diseases in all healthcare settings and the community.