优化供水参数,提高不同工作条件下水产养殖池塘的热均匀性:实验研究

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
{"title":"优化供水参数,提高不同工作条件下水产养殖池塘的热均匀性:实验研究","authors":"","doi":"10.1016/j.applthermaleng.2024.124377","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture ponds are critical for the successful rearing of fish larvae, and achieving consistent temperature distribution within these systems is essential for optimal growth conditions. This study explores methods for precise temperature regulation on both the water and atmospheric sides of the pond ecosystem. Based on the original design, systematic changes were made to parameters such as water supply pipe layout, bend angles, perforation rates, and working conditions. Metrics including average temperature, average temperature difference, and extreme temperature difference were utilized to extensively discuss the impacts of these parameters. Through this, temperature distributions across five distinct water supply layouts were analyzed, and the impacts of four different bending angles and perforation rates were evaluated using optimized configurations. Our findings demonstrate that a water supply layout radius of 2000 mm, coupled with a 60° bending angle and a 25 % perforation rate, increased overall temperature uniformity in the pond by 5 %. Additionally, seasonal variations significantly impact temperature distribution in ponds, particularly with different extreme temperature differences observed in winter and summer. Compared to the transitional season and summer, the average temperature difference in the pond during winter decreased by 30 % and 45 %, respectively. It was further revealed that winter conditions naturally yield more uniform water-side temperatures, making seasonal fluctuations irrelevant in determining optimal perforation rates. After the implementation of a water agitator, the average extreme temperature difference decreased from 0.6 K to 0.52 K. In the shallow water layer, the water agitator reduced the extreme temperature difference in the pond by 26 %. The use of water agitators has enhanced thermal uniformity in ponds, thereby improving the growth environment for fish larvae and providing valuable insights for environmental management in aquaculture.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of water supply parameters for enhanced thermal uniformity in aquaculture ponds under varied working conditions: An experimental study\",\"authors\":\"\",\"doi\":\"10.1016/j.applthermaleng.2024.124377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquaculture ponds are critical for the successful rearing of fish larvae, and achieving consistent temperature distribution within these systems is essential for optimal growth conditions. This study explores methods for precise temperature regulation on both the water and atmospheric sides of the pond ecosystem. Based on the original design, systematic changes were made to parameters such as water supply pipe layout, bend angles, perforation rates, and working conditions. Metrics including average temperature, average temperature difference, and extreme temperature difference were utilized to extensively discuss the impacts of these parameters. Through this, temperature distributions across five distinct water supply layouts were analyzed, and the impacts of four different bending angles and perforation rates were evaluated using optimized configurations. Our findings demonstrate that a water supply layout radius of 2000 mm, coupled with a 60° bending angle and a 25 % perforation rate, increased overall temperature uniformity in the pond by 5 %. Additionally, seasonal variations significantly impact temperature distribution in ponds, particularly with different extreme temperature differences observed in winter and summer. Compared to the transitional season and summer, the average temperature difference in the pond during winter decreased by 30 % and 45 %, respectively. It was further revealed that winter conditions naturally yield more uniform water-side temperatures, making seasonal fluctuations irrelevant in determining optimal perforation rates. After the implementation of a water agitator, the average extreme temperature difference decreased from 0.6 K to 0.52 K. In the shallow water layer, the water agitator reduced the extreme temperature difference in the pond by 26 %. The use of water agitators has enhanced thermal uniformity in ponds, thereby improving the growth environment for fish larvae and providing valuable insights for environmental management in aquaculture.</p></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124020453\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124020453","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

水产养殖池塘是成功饲养鱼类幼体的关键,在这些系统中实现一致的温度分布对最佳生长条件至关重要。本研究探讨了在池塘生态系统的水和大气两侧精确调节温度的方法。在原始设计的基础上,对供水管道布局、弯曲角度、穿孔率和工作条件等参数进行了系统性修改。利用平均温度、平均温差和极端温差等指标来广泛讨论这些参数的影响。为此,我们分析了五种不同供水布局的温度分布,并使用优化配置评估了四种不同弯曲角度和穿孔率的影响。我们的研究结果表明,供水布局半径为 2000 毫米,加上 60° 的弯曲角度和 25% 的穿孔率,可将池塘中的整体温度均匀性提高 5%。此外,季节变化对池塘的温度分布也有显著影响,特别是在冬季和夏季观察到的极端温差不同。与过渡季节和夏季相比,冬季池塘的平均温差分别减少了 30% 和 45%。研究进一步表明,冬季自然条件下的水边温度更均匀,因此季节波动与确定最佳穿孔率无关。在浅水层,水搅拌器将池塘的极端温差降低了 26%。水搅拌器的使用提高了池塘的热均匀性,从而改善了鱼类幼体的生长环境,并为水产养殖的环境管理提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of water supply parameters for enhanced thermal uniformity in aquaculture ponds under varied working conditions: An experimental study

Aquaculture ponds are critical for the successful rearing of fish larvae, and achieving consistent temperature distribution within these systems is essential for optimal growth conditions. This study explores methods for precise temperature regulation on both the water and atmospheric sides of the pond ecosystem. Based on the original design, systematic changes were made to parameters such as water supply pipe layout, bend angles, perforation rates, and working conditions. Metrics including average temperature, average temperature difference, and extreme temperature difference were utilized to extensively discuss the impacts of these parameters. Through this, temperature distributions across five distinct water supply layouts were analyzed, and the impacts of four different bending angles and perforation rates were evaluated using optimized configurations. Our findings demonstrate that a water supply layout radius of 2000 mm, coupled with a 60° bending angle and a 25 % perforation rate, increased overall temperature uniformity in the pond by 5 %. Additionally, seasonal variations significantly impact temperature distribution in ponds, particularly with different extreme temperature differences observed in winter and summer. Compared to the transitional season and summer, the average temperature difference in the pond during winter decreased by 30 % and 45 %, respectively. It was further revealed that winter conditions naturally yield more uniform water-side temperatures, making seasonal fluctuations irrelevant in determining optimal perforation rates. After the implementation of a water agitator, the average extreme temperature difference decreased from 0.6 K to 0.52 K. In the shallow water layer, the water agitator reduced the extreme temperature difference in the pond by 26 %. The use of water agitators has enhanced thermal uniformity in ponds, thereby improving the growth environment for fish larvae and providing valuable insights for environmental management in aquaculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信