基于变分不等式的基本方法,为基于摩擦力的运动问题建模

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Panyu Chen , Álvaro Mateos González , Laurent Mertz
{"title":"基于变分不等式的基本方法,为基于摩擦力的运动问题建模","authors":"Panyu Chen ,&nbsp;Álvaro Mateos González ,&nbsp;Laurent Mertz","doi":"10.1016/j.aml.2024.109305","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an elementary proof based on a penalization technique to show the existence and uniqueness of the solution to a system of variational inequalities modeling the friction-based motion of a two-body crawling system. Here for each body, the static and dynamic friction coefficients are equal.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109305"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary approach based on variational inequalities for modeling a friction-based locomotion problem\",\"authors\":\"Panyu Chen ,&nbsp;Álvaro Mateos González ,&nbsp;Laurent Mertz\",\"doi\":\"10.1016/j.aml.2024.109305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an elementary proof based on a penalization technique to show the existence and uniqueness of the solution to a system of variational inequalities modeling the friction-based motion of a two-body crawling system. Here for each body, the static and dynamic friction coefficients are equal.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109305\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003252\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003252","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个基于惩罚技术的基本证明,以说明模拟双体爬行系统摩擦运动的变分不等式系统解的存在性和唯一性。在这里,每个身体的静摩擦系数和动摩擦系数都相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elementary approach based on variational inequalities for modeling a friction-based locomotion problem

We propose an elementary proof based on a penalization technique to show the existence and uniqueness of the solution to a system of variational inequalities modeling the friction-based motion of a two-body crawling system. Here for each body, the static and dynamic friction coefficients are equal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信