具有涡度的二维可压缩亚音速喷流的自由边界凸度

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xin Wang
{"title":"具有涡度的二维可压缩亚音速喷流的自由边界凸度","authors":"Xin Wang","doi":"10.1016/j.aml.2024.109303","DOIUrl":null,"url":null,"abstract":"<div><p>In the recent work (<span><span>[1]</span></span>, 2024) by Y. Li et al., the existence and uniqueness of the two-dimensional compressible subsonic jet flow with general vorticity were established. As a follow-up research, we will investigate the geometry shape of the free boundary for the compressible subsonic rotational jet flow. It is proved that if the nozzle is concave to the fluid, then the free boundary for the jet flow is strictly convex to the fluid. Furthermore, the positivity of the horizontal velocity in the fluid region is also obtained.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109303"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity of the free boundary for two-dimensional compressible subsonic jet flow with vorticity\",\"authors\":\"Xin Wang\",\"doi\":\"10.1016/j.aml.2024.109303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the recent work (<span><span>[1]</span></span>, 2024) by Y. Li et al., the existence and uniqueness of the two-dimensional compressible subsonic jet flow with general vorticity were established. As a follow-up research, we will investigate the geometry shape of the free boundary for the compressible subsonic rotational jet flow. It is proved that if the nozzle is concave to the fluid, then the free boundary for the jet flow is strictly convex to the fluid. Furthermore, the positivity of the horizontal velocity in the fluid region is also obtained.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109303\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在李玉等人的最新研究([1], 2024)中,建立了具有一般涡度的二维可压缩亚声速射流的存在性和唯一性。作为后续研究,我们将研究可压缩亚音速旋转射流自由边界的几何形状。研究证明,如果喷嘴凹向流体,则射流的自由边界严格凸向流体。此外,还得到了流体区域水平速度的正值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convexity of the free boundary for two-dimensional compressible subsonic jet flow with vorticity

In the recent work ([1], 2024) by Y. Li et al., the existence and uniqueness of the two-dimensional compressible subsonic jet flow with general vorticity were established. As a follow-up research, we will investigate the geometry shape of the free boundary for the compressible subsonic rotational jet flow. It is proved that if the nozzle is concave to the fluid, then the free boundary for the jet flow is strictly convex to the fluid. Furthermore, the positivity of the horizontal velocity in the fluid region is also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信