构建由 LCA 组滤波器生成的成对正交 Parseval 框架

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Navneet Redhu , Anupam Gumber , Niraj K. Shukla
{"title":"构建由 LCA 组滤波器生成的成对正交 Parseval 框架","authors":"Navneet Redhu ,&nbsp;Anupam Gumber ,&nbsp;Niraj K. Shukla","doi":"10.1016/j.acha.2024.101708","DOIUrl":null,"url":null,"abstract":"<div><p>The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfying the local integrability condition (LIC) and having the Calderón sum one, where <em>G</em> is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing <em>N</em> numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101708"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups\",\"authors\":\"Navneet Redhu ,&nbsp;Anupam Gumber ,&nbsp;Niraj K. Shukla\",\"doi\":\"10.1016/j.acha.2024.101708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> satisfying the local integrability condition (LIC) and having the Calderón sum one, where <em>G</em> is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing <em>N</em> numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"74 \",\"pages\":\"Article 101708\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106352032400085X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032400085X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义平移不变(GTI)系统将广义平移不变系统的离散帧理论与其连续版本(如小波、小剪切、Gabor变换等)统一起来。本文提供了在 L2(G) 中构建满足局部可整性条件(LIC)且卡尔德龙和为一的成对正交 Parseval GTI 框架的充分条件,其中 G 是第二可数局部紧凑非良性群。成对正交性在多址通信、隐藏数据、合成超级帧和帧等方面起着至关重要的作用。此外,我们还提供了一个结果,用于构造 N 个成对正交的 GTI Parseval 帧。因此,我们利用 B-样条函数作为生成函数,在 L2(R) 和 L2(G) 中获得了成对正交 Parseval 帧的显式构造。最后,我们特别讨论了小波系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of pairwise orthogonal Parseval frames generated by filters on LCA groups

The generalized translation invariant (GTI) systems unify the discrete frame theory of generalized shift-invariant systems with its continuous version, such as wavelets, shearlets, Gabor transforms, and others. This article provides sufficient conditions to construct pairwise orthogonal Parseval GTI frames in L2(G) satisfying the local integrability condition (LIC) and having the Calderón sum one, where G is a second countable locally compact abelian group. The pairwise orthogonality plays a crucial role in multiple access communications, hiding data, synthesizing superframes and frames, etc. Further, we provide a result for constructing N numbers of GTI Parseval frames, which are pairwise orthogonal. Consequently, we obtain an explicit construction of pairwise orthogonal Parseval frames in L2(R) and L2(G), using B-splines as a generating function. In the end, the results are particularly discussed for wavelet systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信