Hana Ovčačíková , Jeffrey Stephen Miller , Vlastimil Matějka , Eva Bartoníčková , Ondřej Jankovský , Jozef Vlček
{"title":"基于陶瓷釉料和伦敦地下废弃粉尘的混合硅酸盐材料的特性分析","authors":"Hana Ovčačíková , Jeffrey Stephen Miller , Vlastimil Matějka , Eva Bartoníčková , Ondřej Jankovský , Jozef Vlček","doi":"10.1016/j.oceram.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>In “London Underground” stations, a high concentration of dust particles containing organic and inorganic matter of varying chemical composition. “London underground dust” is created from train wheels and brakes grinding against steel tracks and collected in filtration systems. The experiment will focus on using “London Underground Dust” to colour the ceramic facing tiles intended for re-use in newly built London Underground stations. The phase composition, particle size distribution surface area, morphology, and thermal behavior of collected dust were studied by XRD, XRF, SEM-EDS, BET, heating microscopy, STA-MS, UV–VIS spectroscopy. The substrate tiles for glazing experiments were prepared from local London clay. The mixtures of glazes and collected or milled dust were sprayed on the substrate tile's surface, dried and finally fired at 1060 °C. The influence of used materials weight ratio and dust milling time were shown as crucial parameters to obtain optimal final glaze colour.</p></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"20 ","pages":"Article 100664"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666539524001287/pdfft?md5=09d920c053e3248fb1c0242850c30d68&pid=1-s2.0-S2666539524001287-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of hybrid silicate materials based on ceramic glazes and waste London underground dust\",\"authors\":\"Hana Ovčačíková , Jeffrey Stephen Miller , Vlastimil Matějka , Eva Bartoníčková , Ondřej Jankovský , Jozef Vlček\",\"doi\":\"10.1016/j.oceram.2024.100664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In “London Underground” stations, a high concentration of dust particles containing organic and inorganic matter of varying chemical composition. “London underground dust” is created from train wheels and brakes grinding against steel tracks and collected in filtration systems. The experiment will focus on using “London Underground Dust” to colour the ceramic facing tiles intended for re-use in newly built London Underground stations. The phase composition, particle size distribution surface area, morphology, and thermal behavior of collected dust were studied by XRD, XRF, SEM-EDS, BET, heating microscopy, STA-MS, UV–VIS spectroscopy. The substrate tiles for glazing experiments were prepared from local London clay. The mixtures of glazes and collected or milled dust were sprayed on the substrate tile's surface, dried and finally fired at 1060 °C. The influence of used materials weight ratio and dust milling time were shown as crucial parameters to obtain optimal final glaze colour.</p></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"20 \",\"pages\":\"Article 100664\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001287/pdfft?md5=09d920c053e3248fb1c0242850c30d68&pid=1-s2.0-S2666539524001287-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539524001287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539524001287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Characterization of hybrid silicate materials based on ceramic glazes and waste London underground dust
In “London Underground” stations, a high concentration of dust particles containing organic and inorganic matter of varying chemical composition. “London underground dust” is created from train wheels and brakes grinding against steel tracks and collected in filtration systems. The experiment will focus on using “London Underground Dust” to colour the ceramic facing tiles intended for re-use in newly built London Underground stations. The phase composition, particle size distribution surface area, morphology, and thermal behavior of collected dust were studied by XRD, XRF, SEM-EDS, BET, heating microscopy, STA-MS, UV–VIS spectroscopy. The substrate tiles for glazing experiments were prepared from local London clay. The mixtures of glazes and collected or milled dust were sprayed on the substrate tile's surface, dried and finally fired at 1060 °C. The influence of used materials weight ratio and dust milling time were shown as crucial parameters to obtain optimal final glaze colour.