Zhaowei Wang , Danxia Wang , Yanping Chen , Chenhui Zhang , Hongen Jia
{"title":"基于量规-乌泽法的密度可变多流体力学方程数值近似法","authors":"Zhaowei Wang , Danxia Wang , Yanping Chen , Chenhui Zhang , Hongen Jia","doi":"10.1016/j.apnum.2024.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method\",\"authors\":\"Zhaowei Wang , Danxia Wang , Yanping Chen , Chenhui Zhang , Hongen Jia\",\"doi\":\"10.1016/j.apnum.2024.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Numerical approximation for the MHD equations with variable density based on the Gauge-Uzawa method
In this paper, we consider the numerical approximation of incompressible magnetohydrodynamic (MHD) system with variable density. Firstly, we provide first- and second-order time discretization schemes based on the convective form of the Gauge-Uzawa method. Secondly, we prove that the proposed schemes are unconditionally stable. We also provide error estimates through rigorous theoretical analysis. Then, we construct a fully-discrete first-order scheme with finite elements in space and provide its stability result. Finally, we present some numerical experiments to validate the effectiveness of the proposed schemes. Furthermore, we also present the conserved scheme and its numerical results.