绿色弗雷德霍姆积分方程系统的超融合方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rakesh Kumar, Kapil Kant, B.V. Rathish Kumar
{"title":"绿色弗雷德霍姆积分方程系统的超融合方案","authors":"Rakesh Kumar,&nbsp;Kapil Kant,&nbsp;B.V. Rathish Kumar","doi":"10.1016/j.apnum.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi><mo>+</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Theoretical findings are validated through extensive numerical experiments.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergent scheme for a system of green Fredholm integral equations\",\"authors\":\"Rakesh Kumar,&nbsp;Kapil Kant,&nbsp;B.V. Rathish Kumar\",\"doi\":\"10.1016/j.apnum.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>α</mi><mo>+</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span> order of convergence. Theoretical findings are validated through extensive numerical experiments.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种以格林核函数为特征的第二类线性弗雷德霍姆积分方程系统的数值方案。其中包括引入基于分次多项式的 Galerkin 和迭代 Galerkin (IG) 方法来处理积分模型。对这些拟议方法的收敛性和误差进行了全面分析。首先,确定了 Galerkin 方法和迭代 Galerkin 方法解的存在性和唯一性。随后,利用函数分析工具和格林内核的有界属性推导出收敛阶次。Galerkin 方案的收敛阶数为 O(hα)。接着,建立了迭代 Galerkin(IG)方法的超收敛性。IG 方法的收敛阶数为 O(hα+α⁎)。大量的数值实验验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconvergent scheme for a system of green Fredholm integral equations

In this study, a numerical scheme to a system of second-kind linear Fredholm integral equations featuring a Green's kernel function is proposed. This involves introducing Galerkin and iterated Galerkin (IG) methods based on piecewise polynomials to tackle the integral model. A thorough analysis of convergence and error for these proposed methods is carried out. Firstly, the existence and uniqueness of solutions for the Galerkin and iterated Galerkin methods are established. Later, the order of convergence is derived using tools from functional analysis and the boundedness property of Green's kernel. The Galerkin scheme has O(hα) order of convergence. Next, the superconvergence of the iterated Galerkin (IG) method is established. The IG method exhibits O(hα+α) order of convergence. Theoretical findings are validated through extensive numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信