{"title":"葫芦中 CmoADHs 的全基因组鉴定和表达分析--CmoADH9 在抗旱中的关键作用","authors":"","doi":"10.1016/j.envexpbot.2024.105967","DOIUrl":null,"url":null,"abstract":"<div><p>In plants, alcohol dehydrogenases (ADHs) are involved in stress response, organ development, fruit ripening, and metabolite synthesis. However, little is known regarding ADH-encoding genes (<em>ADHs</em>) in <em>Cucurbita moschata</em> which is usually used as a rootstock for cucumber, melon, watermelon, and other cucurbit crops to resist soil-borne diseases and abiotic stresses. We identified 11 <em>CmoADHs</em> in the <em>C. moschata</em> genome that were unevenly distributed across seven chromosomes. These genes were predicted to encode stable cytoplasmic acidic proteins, sharing a low degree of identity with each other. The genes exhibited different intron–exon structures. Analysis of <em>cis</em>-acting regulatory elements showed that <em>CmoADHs</em> contain environmental stress-, hormone response-, light response-, and development/tissue specificity-related elements in their promoters. Expression pattern analysis revealed that <em>CmoADH2</em>, <em>CmoADH3</em>, <em>CmoADH4</em>, <em>CmoADH9</em>, <em>CmoADH10</em>, and <em>CmoADH11</em> had the highest expression levels in the roots, which were significantly higher than those in the other tested tissues. These six genes may play important roles in the growth and development of roots, and in related abiotic stress responses. <em>CmoADH1</em>, <em>CmoADH5</em>, <em>CmoADH6</em>, <em>CmoADH7</em>, <em>CmoADH8</em> had the highest expression in the apical region and could be involved in the differentiation of newly formed tissues. To study the role of <em>CmoADHs</em> in abiotic stress, salt, drought, low temperature, and ethephon treatments were performed. Under drought conditions, <em>CmoADHs</em> showed different expression trends. The expression levels of <em>CmoADH1</em>, <em>CmoADH2</em>, <em>CmoADH3</em>, and <em>CmoADH9</em> increased significantly and peaked after 1 h of drought treatment, indicating that these four genes are more sensitive to drought stress. Under salt treatment, all <em>CmoADHs</em> showed a significant increase or decrease in expression within 6 h, except for <em>CmoADH5</em> and <em>CmoADH10</em>, which were insensitive to salt treatment. The expression of most of the <em>CmoADHs</em> was significantly downregulated by low-temperature treatment. Ethephon treatment significantly induced the expression of all the <em>CmoADHs</em>, except <em>CmoADH2</em>, to different degrees within 12 h. <em>CmoADH9</em> was found to be involved in root growth and drought stress resistance. Identification of these <em>ADH</em> genes can provide useful resources for conferring stress resistance in other economically important crops.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and expression analysis of CmoADHs in Cucurbita moschata—Critical role of CmoADH9 in drought tolerance\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In plants, alcohol dehydrogenases (ADHs) are involved in stress response, organ development, fruit ripening, and metabolite synthesis. However, little is known regarding ADH-encoding genes (<em>ADHs</em>) in <em>Cucurbita moschata</em> which is usually used as a rootstock for cucumber, melon, watermelon, and other cucurbit crops to resist soil-borne diseases and abiotic stresses. We identified 11 <em>CmoADHs</em> in the <em>C. moschata</em> genome that were unevenly distributed across seven chromosomes. These genes were predicted to encode stable cytoplasmic acidic proteins, sharing a low degree of identity with each other. The genes exhibited different intron–exon structures. Analysis of <em>cis</em>-acting regulatory elements showed that <em>CmoADHs</em> contain environmental stress-, hormone response-, light response-, and development/tissue specificity-related elements in their promoters. Expression pattern analysis revealed that <em>CmoADH2</em>, <em>CmoADH3</em>, <em>CmoADH4</em>, <em>CmoADH9</em>, <em>CmoADH10</em>, and <em>CmoADH11</em> had the highest expression levels in the roots, which were significantly higher than those in the other tested tissues. These six genes may play important roles in the growth and development of roots, and in related abiotic stress responses. <em>CmoADH1</em>, <em>CmoADH5</em>, <em>CmoADH6</em>, <em>CmoADH7</em>, <em>CmoADH8</em> had the highest expression in the apical region and could be involved in the differentiation of newly formed tissues. To study the role of <em>CmoADHs</em> in abiotic stress, salt, drought, low temperature, and ethephon treatments were performed. Under drought conditions, <em>CmoADHs</em> showed different expression trends. The expression levels of <em>CmoADH1</em>, <em>CmoADH2</em>, <em>CmoADH3</em>, and <em>CmoADH9</em> increased significantly and peaked after 1 h of drought treatment, indicating that these four genes are more sensitive to drought stress. Under salt treatment, all <em>CmoADHs</em> showed a significant increase or decrease in expression within 6 h, except for <em>CmoADH5</em> and <em>CmoADH10</em>, which were insensitive to salt treatment. The expression of most of the <em>CmoADHs</em> was significantly downregulated by low-temperature treatment. Ethephon treatment significantly induced the expression of all the <em>CmoADHs</em>, except <em>CmoADH2</em>, to different degrees within 12 h. <em>CmoADH9</em> was found to be involved in root growth and drought stress resistance. Identification of these <em>ADH</em> genes can provide useful resources for conferring stress resistance in other economically important crops.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003253\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003253","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Genome-wide identification and expression analysis of CmoADHs in Cucurbita moschata—Critical role of CmoADH9 in drought tolerance
In plants, alcohol dehydrogenases (ADHs) are involved in stress response, organ development, fruit ripening, and metabolite synthesis. However, little is known regarding ADH-encoding genes (ADHs) in Cucurbita moschata which is usually used as a rootstock for cucumber, melon, watermelon, and other cucurbit crops to resist soil-borne diseases and abiotic stresses. We identified 11 CmoADHs in the C. moschata genome that were unevenly distributed across seven chromosomes. These genes were predicted to encode stable cytoplasmic acidic proteins, sharing a low degree of identity with each other. The genes exhibited different intron–exon structures. Analysis of cis-acting regulatory elements showed that CmoADHs contain environmental stress-, hormone response-, light response-, and development/tissue specificity-related elements in their promoters. Expression pattern analysis revealed that CmoADH2, CmoADH3, CmoADH4, CmoADH9, CmoADH10, and CmoADH11 had the highest expression levels in the roots, which were significantly higher than those in the other tested tissues. These six genes may play important roles in the growth and development of roots, and in related abiotic stress responses. CmoADH1, CmoADH5, CmoADH6, CmoADH7, CmoADH8 had the highest expression in the apical region and could be involved in the differentiation of newly formed tissues. To study the role of CmoADHs in abiotic stress, salt, drought, low temperature, and ethephon treatments were performed. Under drought conditions, CmoADHs showed different expression trends. The expression levels of CmoADH1, CmoADH2, CmoADH3, and CmoADH9 increased significantly and peaked after 1 h of drought treatment, indicating that these four genes are more sensitive to drought stress. Under salt treatment, all CmoADHs showed a significant increase or decrease in expression within 6 h, except for CmoADH5 and CmoADH10, which were insensitive to salt treatment. The expression of most of the CmoADHs was significantly downregulated by low-temperature treatment. Ethephon treatment significantly induced the expression of all the CmoADHs, except CmoADH2, to different degrees within 12 h. CmoADH9 was found to be involved in root growth and drought stress resistance. Identification of these ADH genes can provide useful resources for conferring stress resistance in other economically important crops.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.