{"title":"尼亚斯-尼科巴海沟外弧活动构造变形:岩石圈应力和地震滑移模型的启示","authors":"","doi":"10.1016/j.jseaes.2024.106299","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the seismic behavior and deformation characteristics in the outer-arc region off the Nicobar trench using stress inversion and teleseismic finite-fault modeling. The spatial and depth-wise variations in stress field in this region indicate variations in post-seismic deformation scenarios along the arc. The lateral shear, similar to the north Wharton basin, is the major deformational field in the Nicobar segment, favoring earthquake faulting along ∼ESE or ∼NNE nodal planes here. Shallow oblique-normal faulting and deeper oblique-reverse regimes are observed in the Nias region. These observations suggest that the plate bending effects directly influence the ongoing tectonics in the Nias region. Moreover, variations in the stress fields across the arc could be indicative of an uncoupled plate interface. Our finite-fault modeling analysis indicates dominant ∼ESE-WNW fault plane orientations for selected events from this region. This suggests the possibility of faulting within similarly oriented active shear structures within the northern Wharton Basin, contrasting the prevailing ∼N-S faulting pattern in that area. Besides, the centroid depths of most of these earthquakes are typically within the 600°C isotherm. However, the seismic slip may extend deeper by rupturing the crust, occasionally reaching upper mantle depths.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outer-arc active tectonic deformation off the Nias – Nicobar Trench: Insights from lithospheric stress and seismic slip models\",\"authors\":\"\",\"doi\":\"10.1016/j.jseaes.2024.106299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the seismic behavior and deformation characteristics in the outer-arc region off the Nicobar trench using stress inversion and teleseismic finite-fault modeling. The spatial and depth-wise variations in stress field in this region indicate variations in post-seismic deformation scenarios along the arc. The lateral shear, similar to the north Wharton basin, is the major deformational field in the Nicobar segment, favoring earthquake faulting along ∼ESE or ∼NNE nodal planes here. Shallow oblique-normal faulting and deeper oblique-reverse regimes are observed in the Nias region. These observations suggest that the plate bending effects directly influence the ongoing tectonics in the Nias region. Moreover, variations in the stress fields across the arc could be indicative of an uncoupled plate interface. Our finite-fault modeling analysis indicates dominant ∼ESE-WNW fault plane orientations for selected events from this region. This suggests the possibility of faulting within similarly oriented active shear structures within the northern Wharton Basin, contrasting the prevailing ∼N-S faulting pattern in that area. Besides, the centroid depths of most of these earthquakes are typically within the 600°C isotherm. However, the seismic slip may extend deeper by rupturing the crust, occasionally reaching upper mantle depths.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024002943\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024002943","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Outer-arc active tectonic deformation off the Nias – Nicobar Trench: Insights from lithospheric stress and seismic slip models
This study investigates the seismic behavior and deformation characteristics in the outer-arc region off the Nicobar trench using stress inversion and teleseismic finite-fault modeling. The spatial and depth-wise variations in stress field in this region indicate variations in post-seismic deformation scenarios along the arc. The lateral shear, similar to the north Wharton basin, is the major deformational field in the Nicobar segment, favoring earthquake faulting along ∼ESE or ∼NNE nodal planes here. Shallow oblique-normal faulting and deeper oblique-reverse regimes are observed in the Nias region. These observations suggest that the plate bending effects directly influence the ongoing tectonics in the Nias region. Moreover, variations in the stress fields across the arc could be indicative of an uncoupled plate interface. Our finite-fault modeling analysis indicates dominant ∼ESE-WNW fault plane orientations for selected events from this region. This suggests the possibility of faulting within similarly oriented active shear structures within the northern Wharton Basin, contrasting the prevailing ∼N-S faulting pattern in that area. Besides, the centroid depths of most of these earthquakes are typically within the 600°C isotherm. However, the seismic slip may extend deeper by rupturing the crust, occasionally reaching upper mantle depths.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.