不同运行条件下数据驱动的电动汽车电池健康模型对比分析

IF 9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"不同运行条件下数据驱动的电动汽车电池健康模型对比分析","authors":"","doi":"10.1016/j.energy.2024.133155","DOIUrl":null,"url":null,"abstract":"<div><p>The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 <strong>°</strong>C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.</p></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of data-driven electric vehicle battery health models across different operating conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.energy.2024.133155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 <strong>°</strong>C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.</p></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S036054422402930X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036054422402930X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作包括开发一种数据驱动算法,并计算用于锂离子电池健康状况(SOH)估计的学习模型的性能。在 1C 和 2C 的不同充电和放电速率下,使用了多种环境和温度条件(15 °C、25 °C 和 35 °C)来估算电动汽车电池的健康状况。电池'a'的测试数据结果与另一组电池'b'在相同测试参数下的结果进行了验证,并将结果列表比较。在 25 °C 时,决策树(DT)、k-近邻(KNN)和随机森林(RF)回归算法的平均绝对误差分别为 3.78641E-03、3.62524E-03 和 6.16931E-03。回归算法 DT、KNN 和 RF 的平均绝对百分比误差分别为 1.48921E-03、1.40631E-03 和 2.40260E-03。回归算法 DT、KNN 和 RF 的均方根误差分别为 1.26813E-02、9.73320E-03 和 1.17238E-02,回归算法 DT、KNN 和 RF 的均方根误差分别为 1.60816E-04、9.47351E-05 和 1.37448E-04。结果表明,与射频方法相比,KNN 和 DT 方法能准确估计不同工作条件下的 SOH,可促进先进电池健康监测系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative analysis of data-driven electric vehicle battery health models across different operating conditions

Comparative analysis of data-driven electric vehicle battery health models across different operating conditions

The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 °C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信