具有时间和空间相关扰动的一维阻尼可压缩欧拉方程的全局存在性和炸毁问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuusuke Sugiyama
{"title":"具有时间和空间相关扰动的一维阻尼可压缩欧拉方程的全局存在性和炸毁问题","authors":"Yuusuke Sugiyama","doi":"10.1016/j.na.2024.113658","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 1D Euler equation with time and space dependent damping term <span><math><mrow><mo>−</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mi>v</mi></mrow></math></span>. It has long been known that when <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a positive constant or 0, the solution exists globally in time or blows up in finite time, respectively. In this paper, we prove that those results are invariant with respect to time and space dependent perturbations. We suppose that the coefficient <span><math><mi>a</mi></math></span> satisfies the following condition <span><span><span><math><mrow><mrow><mo>|</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are integrable functions with <span><math><mi>t</mi></math></span> and <span><math><mi>x</mi></math></span>. Under this condition, we show the global existence and the blow-up with small initial data, when <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> respectively. The key of the proof is to divide space into time-dependent regions, using characteristic curves.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001779/pdfft?md5=9f5946837a904defdc71f1e5354348c9&pid=1-s2.0-S0362546X24001779-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Global existence and Blow-up for the 1D damped compressible Euler equations with time and space dependent perturbation\",\"authors\":\"Yuusuke Sugiyama\",\"doi\":\"10.1016/j.na.2024.113658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the 1D Euler equation with time and space dependent damping term <span><math><mrow><mo>−</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mi>v</mi></mrow></math></span>. It has long been known that when <span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a positive constant or 0, the solution exists globally in time or blows up in finite time, respectively. In this paper, we prove that those results are invariant with respect to time and space dependent perturbations. We suppose that the coefficient <span><math><mi>a</mi></math></span> satisfies the following condition <span><span><span><math><mrow><mrow><mo>|</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are integrable functions with <span><math><mi>t</mi></math></span> and <span><math><mi>x</mi></math></span>. Under this condition, we show the global existence and the blow-up with small initial data, when <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> respectively. The key of the proof is to divide space into time-dependent regions, using characteristic curves.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001779/pdfft?md5=9f5946837a904defdc71f1e5354348c9&pid=1-s2.0-S0362546X24001779-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001779\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是一维欧拉方程,其阻尼项-a(t,x)v 与时间和空间有关。众所周知,当 a(t,x) 为正常数或 0 时,解分别在时间上全局存在或在有限时间内炸毁。在本文中,我们将证明这些结果在与时间和空间相关的扰动方面是不变的。我们假设系数 a 满足以下条件 |a(t,x)-μ0|≤a1(t)+a2(x),其中 μ0≥0,a1 和 a2 是与 t 和 x 有关的可积分函数。在此条件下,我们分别证明了当 μ0>0 和 μ0=0 时的全局存在性和小初始数据下的炸毁。证明的关键在于利用特征曲线将空间划分为与时间相关的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and Blow-up for the 1D damped compressible Euler equations with time and space dependent perturbation

In this paper, we consider the 1D Euler equation with time and space dependent damping term a(t,x)v. It has long been known that when a(t,x) is a positive constant or 0, the solution exists globally in time or blows up in finite time, respectively. In this paper, we prove that those results are invariant with respect to time and space dependent perturbations. We suppose that the coefficient a satisfies the following condition |a(t,x)μ0|a1(t)+a2(x),where μ00 and a1 and a2 are integrable functions with t and x. Under this condition, we show the global existence and the blow-up with small initial data, when μ0>0 and μ0=0 respectively. The key of the proof is to divide space into time-dependent regions, using characteristic curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信